HPLC-DAD-ESI-QTOF-MS/MS profiling of Zygophyllum album roots extract and assessment of its cardioprotective effect against deltamethrin-induced myocardial injuries in rat, by suppression of oxidative stress-related inflammation and apoptosis via NF-κB sig
Zygophyllum album is widely used to treat many cardiovascular diseases (CVDs) and as anti-inflammatory plant.
This study aimed to investigate the mechanism of the potential protective effects of Zygophyllum album roots extract (ZARE) against myocardial damage and fibrosis induced by a chronic exposure to deltamethrin (DLM) in rats.
Bioactive compounds present in ZARE were analyzed by HPLC-DAD-ESI-QTOF-MS/MS. In vivo, DLM (4 mg/kg body weight), ZARE (400 mg/kg body weight) and DLM with ZARE were administered to rats orally for 60 days. Biochemical markers (LDH, ALT, CK, CK-MB and cTn-I) were assessed in the plasma by an auto-analyzer. Pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were evaluated by a sandwich ELISA. NF-κB was quantified at mRNA levels by real time PCR. Heart tissue was used to determine cardiac oxidative stress markers (MDA, PC, SOD, CAT, and GPx). Masson's Trichrome (MT) and Sirius Red (SR) stainings were used for explored fibrosis statues.
Phytochemical analysis using HPLC-DAD-ESI-QTOF-MS/MS revealed the presence of twenty six molecules including phenolic compounds and saponins. ZARE significantly improved the heart injury markers (LDH, ALT, CK, CK-MB and cTn-I), lipid peroxidation (MDA), protein oxidation (PC), antioxidant capacity (SOD, CAT, and GPx), and DNA structure, which were altered by DLM exposure. Moreover, ZARE cotreatment reduced the expressions of NF-κB, decreased plasmatic pro-inflammatory cytokines concentration (TNF-α, IL-1β and IL-6), and suppressed the myocardial collagen deposition, as observed by Sirius Red and Masson's Trichrome staining.
ZARE ameliorated the severity of DLM-induced myocardial injuries through improving the oxidative status and reducing profibrotic cytokines production. The ZARE actions could be mediated by downregulation of NF-κB mRNA.
Feriani A
,Tir M
,Gómez-Caravaca AM
,Contreras MDM
,Talhaoui N
,Taamalli A
,Segura-Carretero A
,Ghazouani L
,Mufti A
,Tlili N
,Allagui MS
... -
《-》
Pergularia daemia hydro-ethanolic extract protects against pentylenetetrazole kindling-induced seizures, oxidative stress, and neuroinflammation in mice.
Current antiepileptic drugs fail to control approximately 30% of epilepsies. Therefore, there is a need to develop more effective antiepileptic drugs, and medicinal plants provide an attractive source for new compounds. Pergularia daemia (Asclepiadaceae) is used in Cameroon traditional medicine to treat stroke, anemia, inflammation, and epilepsy. Recently, traditional healers claim that an hydro-ethanolic extract of the roots of P. daemia is more effective than an aqueous extract on refractory seizures.
The antiepileptic effect of P. daemia hydro-ethanolic extract was investigated on the pentylenetetrazole kindling model of temporal lobe epilepsy in mice and possible mechanisms of action.
Mice were divided into 8 groups treated as follows: normal group received distilled water (10 ml/kg, p.o.), control group received distilled water (10 ml/kg, p.o.), ethanol group received ethanol (5%, p.o.), positive control received sodium valproate (300 mg/kg, p.o.), and test groups received P. daemia hydro-ethanolic (HE) extract (1.6, 4, 8 and 16 mg/kg, p.o.). All groups were kindled by 11 injections of pentylenetetrazole (PTZ) (35 mg/kg, i.p.), once every alternate day (48 ± 2 h), until the development of kindling, i.e., the occurrence of stage 5 seizures for two consecutive trials. One week later, i.e., 29th day, mice were challenged with a single and lower dose of PTZ (25 mg/kg, i.p.) that does not induce seizures in normal mice but causes seizures in mice prone to seizures and behavioral alterations. After completion of the kindling procedure, Morris water maze, passive avoidance, and open field tests were performed. Afterward, animals were euthanized, and hippocampi were removed for the estimation of the levels of GABA-transaminase (GABA-T), L-glutamate decarboxylase (L-GAD), and γ-aminobutyric acid (GABA). Oxidative stress and neuroinflammation markers also were quantified. Finally, histological analysis of the hippocampus was carried out.
PTZ-kindling induced myoclonic jerks and generalized tonic-clonic seizures in control mice. However, the HE extract of P. daemia (4-16 mg/kg), compared to sodium valproate, significantly protected mice against myoclonic jerks and generalized tonic-clonic seizures. Also, the HE extract (1.6-16 mg/kg) significantly increased the seizure score. Furthermore, the HE extract of P. daemia significantly reduced seizure-induced cognitive impairments. PTZ-kindling induced significant alterations in GABA, GABA-T, and L-GAD contents as well as oxidative stress, and neuroinflammation, and the HE extract significantly reversed these effects, suggesting possible mechanisms. All these activities of the HE extract were confirmed by its protective effect against neuronal loss in the hippocampus.
The HE extract of P. daemia protected mice against kindled seizures and cognitive impairments, and these effects were greater than those of sodium valproate, a widely used antiepileptic drug. These effects may be mediated by neuromodulatory, anti-oxidant, and anti-inflammatory activities, thus suggesting a neuroprotective effect. These findings help to explain the beneficial use of these HE extracts of P.daemia in traditional medicine to treat epilepsy in Cameroon.
Kavaye Kandeda A
,Okomolo Moto FC
,Mbomo Ayissi RE
,Omam Omam JP
,Ojong L
,Ngo Bum E
... -
《-》