Associations of mixed metal exposure with chronic kidney disease from NHANES 2011-2018.
Metals have been proved to be one of risk factors for chronic kidney disease (CKD) and diabetes, but the effect of mixed metal co-exposure and potential interaction between metals are still unclear. We assessed the urine and whole blood levels of cadmium (Cd), manganese (Mn), lead (Pb), mercury (Hg), and renal function in 3080 adults from National Health and Nutrition Survey (NHANES) (2011-2018) to explore the effect of mixed metal exposure on CKD especially in people with type 2 diabetes mellitus (T2DM). Weighted quantile sum regression model and Bayesian Kernel Machine Regression model were used to evaluate the overall exposure impact of metal mixture and potential interaction between metals. The results showed that the exposure to mixed metals was significantly associated with an increased risk of CKD in blood glucose stratification, with the risk of CKD being 1.58 (1.26,1.99) times in urine and 1.67 (1.19,2.34) times in whole blood higher in individuals exposed to high concentrations of the metal mixture compared to those exposed to low concentrations. The effect of urine metal mixture was elevated magnitude in stratified analysis. There were interactions between urine Pb and Cd, Pb and Mn, Pb and Hg, Cd and Mn, Cd and Hg, and blood Pb and Hg, Mn and Cd, Mn and Pb, Mn and Hg on the risk of CKD in patients with T2DM and no significant interaction between metals was observed in non-diabetics. In summary, mixed metal exposure increased the risk of CKD in patients with T2DM, and there were complex interactions between metals. More in-depth studies are needed to explore the mechanism and demonstrate the causal relationship.
Shi X
,Wang X
,Zhang J
,Dang Y
,Ouyang C
,Pan J
,Yang A
,Hu X
... -
《Scientific Reports》
Synergistic impact of co-exposures to whole blood metals on chronic kidney disease in general US adults: a cross‑sectional study of the National Health and Nutrition Examination Survey 2011-2020.
The impact of exposure to metals on chronic kidney disease (CKD) has only been investigated in two-way or single metal interactions in previous studies. We investigated the associations between five single metals in blood and their mixed exposure and CKD by using the machine learning approach. Relevant data were extracted from the National Health and Nutrition Examination Survey (NHANES 2011-2020), and the level of five metals in blood detected by inductively coupled plasma mass spectrometry was considered as exposures, namely, cadmium (Cd), lead (Pb), total mercury (Hg), manganese (Mn), and selenium (Se). The correlations between individual metal and metal mixtures and CKD were then evaluated by survey-multivariable logistic regression (SMLR), generalized weighted quantile sum (WQS), and Bayesian kernel machine regression (BKMR). Altogether, our study included 12,412 participants representing 572.6 million non-institutionalized US adults. Several single metals with the high quartile of exposure showed a positive association with the CKD ratio including Cd [(AOR = 1.873, 95% CI: 1.537, 2.284), Q4], Pb [(AOR = 1.559, 95% CI: 1.295, 1.880), Q4], and total Hg [(AOR = 1.169, 95% CI: 1.018, 1.343), Q2], while Mn [(AOR = 0.796, 95% CI: 0.684, 0.927), Q2] and Se [(AOR = 0.805, 95% CI: 0.664, 0.976), Q4] were negatively associated with the CKD ratio. In light of the positive fit of the WQS regression model, a significantly positive correlation was found between mixed metals and CKD (AOR = 1.373, 95% CI: 1.224, 1.539) after full covariate adjustment, and a similar finding was also detected in the BKMR model. Our study revealed that each single metal including Cd, Pb, and total Hg might have a positive association with CKD while this association was negative for both Mn and Se. The five metals might have a positive joint effect on CKD.
Liang JH
,Pu YQ
,Liu ML
,Bao WW
,Zhang YS
,Hu LX
,Huang S
,Jiang N
,Huang SY
,Pu XY
,Dong GH
,Chen YJ
... -
《-》