-
Single-cell analysis uncovers high-proliferative tumour cell subtypes and their interactions in the microenvironment of gastric cancer.
Gastric cancer (GC) remains a prominent malignancy that poses a significant threat to human well-being worldwide. Despite advancements in chemotherapy and immunotherapy, which have effectively augmented patient survival rates, the mortality rate associated with GC remains distressingly high. This can be attributed to the elevated proliferation and invasive nature exhibited by GC. Our current understanding of the drivers behind GC cell proliferation remains limited. Hence, in order to reveal the molecular biological mechanism behind the swift advancement of GC, we employed single-cell RNA-sequencing (scRNA-seq) to characterize the tumour microenvironment in this study. The scRNA-seq data of 27 patients were acquired from the Gene Expression Omnibus database. Differential gene analysis, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis were employed to investigate 38 samples. The copy number variation level exhibited by GC cells was determined using InferCNV. The CytoTRACE, Monocle and Slingshot analysis were used to discern the cellular stemness and developmental trajectory of GC cells. The CellChat package was utilized for the analysis of intercellular communication crosstalk. Moreover, the findings of the data analysis were validated through cellular functional tests conducted on the AGS cell line and SGC-7901 cell line. Finally, this study constructed a risk scoring model to evaluate the differences of different risk scores in clinical characteristics, immune infiltration, immune checkpoints, functional enrichment, tumour mutation burden and drug sensitivity. Within the microenvironment of GC, we identified the presence of 8 cell subsets, encompassing NK_T cells, B_Plasma cells, epithelial cells, myeloid cells, endothelial cells, mast cells, fibroblasts, pericytes. By delving deeper into the characterization of GC cells, we identified 6 specific tumour cell subtypes: C0 PSCA+ tumour cells, C1 CLDN7+ tumour cells, C2 UBE2C+ tumour cells, C3 MUC6+ tumour cells, C4 CHGA+ tumour cells and C5 MUC2+ tumour cells. Notably, the C2 UBE2C+ tumour cells demonstrated a close association with cell mitosis and the cell cycle, exhibiting robust proliferative capabilities. Our findings were fortified through enrichment analysis, pseudotime analysis and cell communication analysis. Meanwhile, knockdown of the transcription factor CREB3, which is highly active in UBE2C+ tumour cells, significantly impedes the proliferation, migration and invasion of GC cells. And the prognostic score model constructed with CREB3-related genes showcased commendable clinical predictive capacity, thus providing valuable guidance for patients' prognosis and clinical treatment decisions. We have identified a highly proliferative cellular subgroup C2 UBE2C+ tumour cells in GC for the first time. The employment of a risk score model, which is based on genes associated with UBE2C expression, exhibits remarkable proficiency in predicting the prognosis of GC patients. In our investigation, we observed that the knockdown of the transcription factor CREB3 led to a marked reduction in cellular proliferation, migration and invasion in GC cell line models. Implementing a stratified treatment approach guided by this model represents a judicious and promising methodology.
Zhang W
,Wang X
,Dong J
,Wang K
,Jiang W
,Fan C
,Liu H
,Fan L
,Zhao L
,Li G
... -
《-》
-
Elucidating the role of tumor-associated ALOX5+ mast cells with transformative function in cervical cancer progression via single-cell RNA sequencing.
Cervical cancer (CC) is the fourth most common malignancy among women globally and serves as the main cause of cancer-related deaths among women in developing countries. The early symptoms of CC are often not apparent, with diagnoses typically made at advanced stages, which lead to poor clinical prognoses. In recent years, numerous studies have shown that there is a close relationship between mast cells (MCs) and tumor development. However, research on the role MCs played in CC is still very limited at that time. Thus, the study conducted a single-cell multi-omics analysis on human CC cells, aiming to explore the mechanisms by which MCs interact with the tumor microenvironment in CC. The goal was to provide a scientific basis for the prevention, diagnosis, and treatment of CC, with the hope of improving patients' prognoses and quality of life.
The present study acquired single-cell RNA sequencing data from ten CC tumor samples in the ArrayExpress database. Slingshot and AUCcell were utilized to infer and assess the differentiation trajectory and cell plasticity of MCs subpopulations. Differential expression analysis of MCs subpopulations in CC was performed, employing Gene Ontology, gene set enrichment analysis, and gene set variation analysis. CellChat software package was applied to predict cell communication between MCs subpopulations and CC cells. Cellular functional experiments validated the functionality of TNFRSF12A in HeLa and Caski cell lines. Additionally, a risk scoring model was constructed to evaluate the differences in clinical features, prognosis, immune infiltration, immune checkpoint, and functional enrichment across various risk scores. Copy number variation levels were computed using inference of copy number variations.
The obtained 93,524 high-quality cells were classified into ten cell types, including T_NK cells, endothelial cells, fibroblasts, smooth muscle cells, epithelial cells, B cells, plasma cells, MCs, neutrophils, and myeloid cells. Furthermore, a total of 1,392 MCs were subdivided into seven subpopulations: C0 CTSG+ MCs, C1 CALR+ MCs, C2 ALOX5+ MCs, C3 ANXA2+ MCs, C4 MGP+ MCs, C5 IL32+ MCs, and C6 ADGRL4+ MCs. Notably, the C2 subpopulation showed close associations with tumor-related MCs, with Slingshot results indicating that C2 subpopulation resided at the intermediate-to-late stage of differentiation, potentially representing a crucial transition point in the benign-to-malignant transformation of CC. CNVscore and bulk analysis results further confirmed the transforming state of the C2 subpopulation. CellChat analysis revealed TNFRSF12A as a key receptor involved in the actions of C2 ALOX5+ MCs. Moreover, in vitro experiments indicated that downregulating the TNFRSF12A gene may partially inhibit the development of CC. Additionally, a prognosis model and immune infiltration analysis based on the marker genes of the C2 subpopulation provided valuable guidance for patient prognosis and clinical intervention strategies.
We first identified the transformative tumor-associated MCs subpopulation C2 ALOX5+ MCs within CC, which was at a critical stage of tumor differentiation and impacted the progression of CC. In vitro experiments confirmed the inhibitory effect of knocking down the TNFRSF12A gene on the development of CC. The prognostic model constructed based on the C2 ALOX5+MCs subset demonstrated excellent predictive value. These findings offer a fresh perspective for clinical decision-making in CC.
Zhao F
,Hong J
,Zhou G
,Huang T
,Lin Z
,Zhang Y
,Liang L
,Tang H
... -
《Frontiers in Immunology》
-
Characterization of the Prognosis and Tumor Microenvironment of Cellular Senescence-related Genes through scRNA-seq and Bulk RNA-seq Analysis in GC.
Cellular senescence (CS) is thought to be the primary cause of cancer development and progression. This study aimed to investigate the prognostic role and molecular subtypes of CS-associated genes in gastric cancer (GC).
The CellAge database was utilized to acquire CS-related genes. Expression data and clinical information of GC patients were obtained from The Cancer Genome Atlas (TCGA) database. Patients were then grouped into distinct subtypes using the "Consesus- ClusterPlus" R package based on CS-related genes. An in-depth analysis was conducted to assess the gene expression, molecular function, prognosis, gene mutation, immune infiltration, and drug resistance of each subtype. In addition, a CS-associated risk model was developed based on Cox regression analysis. The nomogram, constructed on the basis of the risk score and clinical factors, was formulated to improve the clinical application of GC patients. Finally, several candidate drugs were screened based on the Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing dataset.
According to the cluster result, patients were categorized into two molecular subtypes (C1 and C2). The two subtypes revealed distinct expression levels, overall survival (OS) and clinical presentations, mutation profiles, tumor microenvironment (TME), and drug resistance. A risk model was developed by selecting eight genes from the differential expression genes (DEGs) between two molecular subtypes. Patients with GC were categorized into two risk groups, with the high-risk group exhibiting a poor prognosis, a higher TME level, and increased expression of immune checkpoints. Function enrichment results suggested that genes were enriched in DNA repaired pathway in the low-risk group. Moreover, the Tumor Immune Dysfunction and Exclusion (TIDE) analysis indicated that immunotherapy is likely to be more beneficial for patients in the low-risk group. Drug analysis results revealed that several drugs, including ML210, ML162, dasatinib, idronoxil, and temsirolimus, may contribute to the treatment of GC patients in the high-risk group. Moreover, the risk model genes presented a distinct expression in single-cell levels in the GSE150290 dataset.
The two molecular subtypes, with their own individual OS rate, expression patterns, and immune infiltration, lay the foundation for further exploration into the GC molecular mechanism. The eight gene signatures could effectively predict the GC prognosis and can serve as reliable markers for GC patients.
Guo G
,Zhou Z
,Chen S
,Cheng J
,Wang Y
,Lan T
,Ye Y
... -
《-》
-
Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer.
Cuproptosis is a novel identified regulated cell death (RCD), which is correlated with the development, treatment response and prognosis of cancer. However, the potential role of cuproptosis-related genes (CRGs) in the tumor microenvironment (TME) of gastric cancer (GC) remains unknown.
Transcriptome profiling, somatic mutation, somatic copy number alteration and clinical data of GC samples were downloaded from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database to describe the alterations of CRGs from genetic and transcriptional fields. Differential, survival and univariate cox regression analyses of CRGs were carried out to investigate the role of CRGs in GC. Cuproptosis molecular subtypes were identified by using consensus unsupervised clustering analysis based on the expression profiles of CRGs, and further analyzed by GO and KEGG gene set variation analyses (GSVA). Genes in distinct molecular subtypes were also analyzed by GO and KEGG gene enrichment analyses (GSEA). Differentially expressed genes (DEGs) were screened out from distinct molecular subtypes and further analyzed by GO enrichment analysis and univariate cox regression analysis. Consensus clustering analysis of prognostic DEGs was performed to identify genomic subtypes. Next, patients were randomly categorized into the training and testing group at a ratio of 1:1. CRG Risk scoring system was constructed through logistic least absolute shrinkage and selection operator (LASSO) cox regression analysis, univariate and multivariate cox analyses in the training group and validated in the testing and combined groups. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to evaluate the expression of key Risk scoring genes. Sensitivity and specificity of Risk scoring system were examined by using receiver operating characteristic (ROC) curves. pRRophetic package in R was used to investigate the therapeutic effects of drugs in high- and low- risk score group. Finally, the nomogram scoring system was developed to predict patients' survival through incorporating the clinicopathological features and CRG Risk score.
Most CRGs were up-regulated in tumor tissues and showed a relatively high mutation frequency. Survival and univariate cox regression analysis revealed that LIAS and FDX1 were significantly associated with GC patients' survival. After consensus unsupervised clustering analysis, GC patients were classified into two cuproptosis molecular subtypes, which were significantly associated with clinical features (gender, age, grade and TNM stage), prognosis, metabolic related pathways and immune cell infiltration in TME of GC. GO enrichment analyses of 84 DEGs, obtained from distinct molecular subtypes, revealed that DEGs primarily enriched in the regulation of metabolism and intracellular/extracellular structure in GC. Univariate cox regression analysis of 84 DEGs further screened out 32 prognostic DEGs. According to the expression profiles of 32 prognostic DEGs, patients were re-classified into two gene subtypes, which were significantly associated with patients' age, grade, T and N stage, and survival of patients. Nest, the Risk score system was constructed with moderate sensitivity and specificity. A high CRG Risk score, characterized by decreased microsatellite instability-high (MSI-H), tumor mutation burden (TMB) and cancer stem cell (CSC) index, and high stromal and immune score in TME, indicated poor survival. Four of five key Risk scoring genes expression were dysregulated in tumor compared with normal samples. Moreover, CRG Risk score was greatly related with sensitivity of multiple drugs. Finally, we established a highly accurate nomogram for promoting the clinical applicability of the CRG Risk scoring system.
Our comprehensive analysis of CRGs in GC demonstrated their potential roles in TME, clinicopathological features, and prognosis. These findings may improve our understanding of CRGs in GC and provide new perceptions for doctors to predict prognosis and develop more effective and personalized therapy strategies.
Wang J
,Qin D
,Tao Z
,Wang B
,Xie Y
,Wang Y
,Li B
,Cao J
,Qiao X
,Zhong S
,Hu X
... -
《Frontiers in Immunology》
-
Single-cell RNA sequencing reveals that MYBL2 in malignant epithelial cells is involved in the development and progression of ovarian cancer.
Ovarian carcinoma (OC) is a prevalent gynecological malignancy associated with high recurrence rates and mortality, often diagnosed at advanced stages. Despite advances in immunotherapy, immune exhaustion remains a significant challenge in achieving optimal tumor control. However, the exploration of intratumoral heterogeneity of malignant epithelial cells and the ovarian cancer tumor microenvironment is still limited, hindering our comprehensive understanding of the disease.
Utilizing single-cell RNA sequencing (scRNA-seq), we comprehensively investigated the cellular composition across six ovarian cancer patients with omental metastasis. Our focus centered on analysis of the malignant epithelial cells. Employing CytoTRACE and slingshot pseudotime analyses, we identified critical subpopulations and explored associated transcription factors (TFs) influencing ovarian cancer progression. Furthermore, by integrating clinical factors from a large cohort of bulk RNA sequencing data, we have established a novel prognostic model to investigate the impact of the tumor immune microenvironment on ovarian cancer patients. Furthermore, we have investigated the condition of immunological exhaustion.
Our study identified a distinct and highly proliferative subgroup of malignant epithelial cells, known as C2 TOP2A+ TCs. This subgroup primarily consisted of patients who hadn't received neoadjuvant chemotherapy. Ovarian cancer patients with elevated TOP2A expression exhibited heightened sensitivity to neoadjuvant chemotherapy (NACT). Moreover, the transcription factor MYBL2 in this subgroup played a critical role in ovarian cancer development. Additionally, we developed an independent prognostic indicator, the TOP2A TCs Risk Score (TTRS), which revealed a correlation between the High TTRS Group and unfavorable outcomes. Furthermore, immune infiltration and drug sensitivity analyses demonstrated increased responsiveness to Paclitaxel, Cisplatin, and Gemcitabine in the Low TTRS Group.
This research deepens our understanding of malignant epithelial cells in ovarian cancer and enhances our knowledge of the ovarian cancer immune microenvironment and immune exhaustion. We have revealed the heightened susceptibility of the C2 TOP2A+ TCs subgroup to neoadjuvant chemotherapy and emphasized the role of MYBL2 within the C2 subgroup in promoting the occurrence and progression of ovarian cancer. These insights provide valuable guidance for the management of ovarian cancer treatment.
Shao W
,Lin Z
,Xiahou Z
,Zhao F
,Xu J
,Liu X
,Cai P
... -
《Frontiers in Immunology》