Exosomes from adipose-derived stem cells regulate macrophage polarization and accelerate diabetic wound healing via the circ-Rps5/miR-124-3p axis.
摘要:
Adipose-derived stem cells (ADSCs) hold promising application prospects in the treatment of diabetic wounds, although the underlying mechanisms of repair have not been fully elucidated. This research aimed to elucidate the mechanisms by which ADSCs promote wound healing. Exosomes from ADSCs were isolated and circRps5 level was identified. To investigate the role of circRps5 in the regulation, exosomes from differently treated ADSCs were used. Different exosomes were injected into the edge of the wound in diabetic mice, and the effects on wound healing status, pathology, collagen, cytokines, and macrophage phenotype were assessed. Raw264.7 cells were co-treated with high glucose and exosomes, and then cell phenotype and autophagy were examined in vitro, followed by the evaluation of miR-124-3p's impact on cell phenotype. Exosomes from ADSCs were isolated and identified using nanoparticle tracking analysis and exosome markers. Overexpression of circRps5 accelerated wound healing, reduced inflammatory response, enhanced collagen production, and promoted the M2 transformation of macrophages. In high glucose-induced macrophages, its overexpression also inhibited excessive autophagy. When macrophages overexpressed miR-124-3p, the induction of the M2 phenotype was suppressed. Luciferase reporter assay proved the combination of circRps5 and miR-124-3p. This study identifies that circRps5 carried by ADSC-Exos promotes macrophage M2 polarization through miR-124-3p. These findings provide valuable insights into the mechanism of ADSC-Exos for treating refractory diabetic wounds, laying a solid theoretical groundwork for future clinical development.
收起
展开
DOI:
10.1002/iid3.1274
被引量:
年份:
2024


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(37)
引证文献(1)
来源期刊
影响因子:2.491
JCR分区: 暂无
中科院分区:暂无