-
Circulating Tumor DNA-Guided De-Escalation Targeted Therapy for Advanced Non-Small Cell Lung Cancer: A Nonrandomized Controlled Trial.
Dong S
,Wang Z
,Zhang JT
,Yan B
,Zhang C
,Gao X
,Sun H
,Li YS
,Yan HH
,Tu HY
,Liu SM
,Gong Y
,Gao W
,Huang J
,Liao RQ
,Lin JT
,Ke EE
,Xu Z
,Zhang X
,Xia X
,Li AN
,Liu SY
,Pan Y
,Yang JJ
,Zhong WZ
,Yi X
,Zhou Q
,Yang XN
,Wu YL
... -
《-》
-
Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
《Jove-Journal of Visualized Experiments》
-
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
A liquid biopsy is a test that evaluates the status of a disease by analyzing a sample of bodily fluid, most commonly blood. In recent years, there has been progress in the development and clinical application of liquid biopsy methods to identify blood-based, tumor-specific biomarkers for many cancer types. However, the implementation of these technologies to aid in the treatment of patients who have a sarcoma remains behind other fields of cancer medicine. For this study, we chose to evaluate a sarcoma liquid biopsy based on circulating tumor DNA (ctDNA). All human beings have normal cell-free DNA (cfDNA) circulating in the blood. In contrast with cfDNA, ctDNA is genetic material present in the blood stream that is derived from a tumor. ctDNA carries the unique genomic fingerprint of the tumor with changes that are not present in normal circulating cfDNA. A successful ctDNA liquid biopsy must be able to target these tumor-specific genetic alterations. For instance, epidermal growth factor receptor (EGFR) mutations are common in lung cancers, and ctDNA liquid biopsies are currently in clinical use to evaluate the status of disease in patients who have a lung cancer by detecting EGFR mutations in the blood. As opposed to many carcinomas, sarcomas do not have common recurrent mutations that could serve as the foundation to a ctDNA liquid biopsy. However, many sarcomas have structural changes to their chromosomes, including gains and losses of portions or entire chromosomes, known as copy number alterations (CNAs), that could serve as a target for a ctDNA liquid biopsy. Murine double minute 2 (MDM2) amplification in select lipomatous tumors or parosteal osteosarcoma is an example of a CNA due to the presence of extra copies of a segment of the long arm of chromosome 12. Since a majority of sarcomas demonstrate a complex karyotype with numerous CNAs, a blood-based liquid biopsy strategy that searches for these CNAs may be able to detect the presence of sarcoma ctDNA. Whole-genome sequencing (WGS) is a next-generation sequencing technique that evaluates the entire genome. The depth of coverage of WGS refers to how detailed the sequencing is, like higher versus lower power on a microscope. WGS can be performed with high-depth sequencing (that is, > 60×), which can detect individual point mutations, or low-depth sequencing (that is, 0.1× to 5×), referred to as low-passage whole-genome sequencing (LP-WGS), which may not detect individual mutations but can detect structural chromosomal changes including gains and losses (that is, CNAs). While similar strategies have shown favorable early results for specific sarcoma subtypes, LP-WGS has not been evaluated for applicability to the broader population of patients who have a sarcoma.
Does an LP-WGS liquid biopsy evaluating for CNAs detect ctDNA in plasma samples from patients who have sarcomas representing a variety of histologic subtypes?
This was a retrospective study conducted at a community-based, tertiary referral center. Nine paired (plasma and formalin-fixed paraffin-embedded [FFPE] tissue) and four unpaired (plasma) specimens from patients who had a sarcoma were obtained from a commercial biospecimen bank. Three control specimens from individuals who did not have cancer were also obtained. The paired and unpaired specimens from patients who had a sarcoma represented a variety of sarcoma histologic subtypes. cfDNA was extracted, amplified, and quantified. Libraries were prepared, and LP-WGS was performed using a NextSeq 500 next-generation sequencing machine at a low depth of sequencing coverage (∼1×). The ichorCNA bioinformatics algorithm, which was designed to detect CNAs from low-depth genomic sequencing data, was used to analyze the data. In contrast with the gold standard for diagnosis in the form of histopathologic analysis of a tissue sample, this test does not discriminate between sarcoma subtypes but detects the presence of tumor-derived CNAs within the ctDNA in the blood that should not be present in a patient who does not have cancer. The liquid biopsy was positive for the detection of cancer if the ichorCNA algorithm detected the presence of ctDNA. The algorithm was also used to quantitatively estimate the percent ctDNA within the cfDNA. The concentration of ctDNA was then calculated from the percent ctDNA relative to the total concentration of cfDNA. The CNAs of the paired FFPE tissue and plasma samples were graphically visualized using aCNViewer software.
This LP-WGS liquid biopsy detected ctDNA in 9 of 13 of the plasma specimens from patients with a sarcoma. The other four samples from patients with a sarcoma and all serum specimens from patients without cancer had no detectable ctDNA. Of those 9 patients with positive liquid biopsy results, the percent ctDNA ranged from 6% to 11%, and calculated ctDNA quantities were 0.04 to 5.6 ng/mL, which are levels to be expected when ctDNA is detectable.
In this small pilot study, we were able to detect sarcoma ctDNA with an LP-WGS liquid biopsy searching for CNAs in the plasma of most patients who had a sarcoma representing a variety of histologic subtypes.
These results suggest that an LP-WGS liquid biopsy evaluating for CNAs to identify ctDNA may be more broadly applicable to the population of patients who have a sarcoma than previously reported in studies focusing on specific subtypes. Large prospective clinical trials that gather samples at multiple time points during the process of diagnosis, treatment, and surveillance will be needed to further assess whether this technique can be clinically useful. At our institution, we are in the process of developing a large prospective clinical trial for this purpose.
Anderson CJ
,Yang H
,Parsons J
,Ahrens WA
,Jagosky MH
,Hsu JH
,Patt JC
,Kneisl JS
,Steuerwald NM
... -
《-》
-
Immune checkpoint inhibitors plus platinum-based chemotherapy compared to platinum-based chemotherapy with or without bevacizumab for first-line treatment of older people with advanced non-small cell lung cancer.
Lung cancer is a cancer of the elderly, with a median age at diagnosis of 71. More than one-third of people diagnosed with lung cancer are over 75 years old. Immune checkpoint inhibitors (ICIs) are special antibodies that target a pathway in the immune system called the programmed cell death 1/programmed cell death-ligand 1 (PD-1/PD-L1) pathway. These antibodies help the immune system fight cancer cells by blocking signals that cancer cells use to avoid being attacked by the immune system. ICIs have changed the treatment of people with lung cancer. In particular, for people with previously-untreated advanced non-small cell lung cancer (NSCLC), current first-line treatment now comprises ICIs plus platinum-based chemotherapy, rather than platinum-based chemotherapy alone, regardless of their PD-L1 expression status. However, as people age, their immune system changes, becoming less effective in its T cell responses. This raises questions about how well ICIs work in older adults.
To assess the effects of immune checkpoint inhibitors (ICIs) in combination with platinum-based chemotherapy compared to platinum-based chemotherapy (with or without bevacizumab) in treatment-naïve adults aged 65 years and older with advanced NSCLC.
We searched the Cochrane Lung Cancer Group Trial Register, CENTRAL, MEDLINE, Embase, two other trial registers, and the websites of drug regulators. The latest search date was 23 August 2023. We also checked references and searched abstracts from the meetings of seven cancer organisations from 2019 to August 2023.
We included randomised controlled trials (RCTs) that reported on the efficacy and safety of adding ICIs to platinum-based chemotherapy compared to platinum-based chemotherapy alone for people 65 years and older who had not previously been treated. All data emanated from international multicentre studies involving adults with histologically-confirmed advanced NSCLC who had not received any previous systemic anticancer therapy for their advanced disease.
We used standard methodological procedures expected by Cochrane. Our primary outcomes were overall survival and treatment-related adverse events (grade 3 or higher). Our secondary outcomes were progression-free survival, objective response rate, time to response, duration of response, and health-related quality of life (HRQoL).
We included 17 primary studies, with a total of 4276 participants, in the review synthesis. We identified nine ongoing studies, and listed one study as 'awaiting classification'. Twelve of the 17 studies included people older than 75 years, accounting for 9% to 13% of their participants. We rated some studies as having 'some concerns' for risk of bias arising from the randomisation process, deviations from the intended interventions, or measurement of the outcome. The overall GRADE rating for the certainty of the evidence ranged from moderate to low because of the risk of bias, imprecision, or inconsistency. People aged 65 years and older The addition of ICIs to platinum-based chemotherapy probably increased overall survival compared to platinum-based chemotherapy alone (hazard ratio (HR) 0.78, 95% confidence interval (CI) 0.70 to 0.88; 8 studies, 2093 participants; moderate-certainty evidence). Only one study reported data for treatment-related adverse events (grade 3 or higher). The frequency of treatment-related adverse events may not differ between the two treatment groups (risk ratio (RR) 1.09, 95% CI 0.89 to 1.32; 1 study, 127 participants; low-certainty evidence). The addition of ICIs to platinum-based chemotherapy probably improves progression-free survival (HR 0.61, 95% CI 0.54 to 0.68; 7 studies, 1885 participants; moderate-certainty evidence). People aged 65 to 75 years, inclusive The addition of ICIs to platinum-based chemotherapy probably improved overall survival compared to platinum-based chemotherapy alone (HR 0.75, 95% CI 0.65 to 0.87; 6 studies, 1406 participants; moderate-certainty evidence). Only one study reported data for treatment-related adverse events (grade 3 or higher). The frequency of treatment-related adverse events probably increased in people treated with ICIs plus platinum-based chemotherapy compared to those treated with platinum-based chemotherapy alone (RR 1.47, 95% CI 1.02 to 2.13; 1 study, 97 participants; moderate-certainty evidence). The addition of ICIs to platinum-based chemotherapy probably improved progression-free survival (HR 0.64, 95% CI 0.57 to 0.73; 8 studies, 1466 participants; moderate-certainty evidence). People aged 75 years and older There may be no difference in overall survival in people treated with ICIs combined with platinum-based chemotherapy compared to platinum-based chemotherapy alone (HR 0.90, 95% CI 0.70 to 1.16; 4 studies, 297 participants; low-certainty evidence). No data on treatment-related adverse events were available in this age group. The effect of combination ICI and platinum-based chemotherapy on progression-free survival is uncertain (HR 0.83, 95% CI 0.51 to 1.36; 3 studies, 226 participants; very low-certainty evidence). Only three studies assessed the objective response rate. For time to response, duration of response, and health-related quality of life, we do not have any evidence yet.
Compared to platinum-based chemotherapy alone, adding ICIs to platinum-based chemotherapy probably leads to higher overall survival and progression-free survival, without an increase in treatment-related adverse events (grade 3 or higher), in people 65 years and older with advanced NSCLC. These data are based on results from studies dominated by participants between 65 and 75 years old. However, the analysis also suggests that the improvements reported in overall survival and progression-free survival may not be seen in people older than 75 years.
Orillard E
,Adhikari A
,Malouf RS
,Calais F
,Marchal C
,Westeel V
... -
《Cochrane Database of Systematic Reviews》
-
Primary lung tumour stereotactic body radiotherapy followed by concurrent mediastinal chemoradiotherapy and adjuvant immunotherapy for locally advanced non-small-cell lung cancer: a multicentre, single-arm, phase 2 trial.
Patients with locally advanced non-small-cell lung cancer (NSCLC) who undergo concurrent chemotherapy and radiotherapy often experience synergistic toxicity, and local regional control rates remain poor. We assessed the activity and safety outcomes of primary tumour stereotactic body radiotherapy (SBRT) followed by conventional chemoradiotherapy to the lymph nodes and consolidation immunotherapy in patients with unresectable locally advanced NSCLC.
In this multicentre, single-arm, phase 2 trial, patients aged 18 years and older were enrolled at eight regional cancer centres in North Carolina and South Carolina, USA. Patients were eligible if they had stage II-III, unresectable, locally advanced NSCLC (any histology), with peripheral or central primary tumours that were 7 cm or smaller, excluding central tumours within 2 cm of involved nodal disease, and an Eastern Cooperative Oncology Group performance status of 0-2. Patients who had previously received systemic therapy or radiotherapy were excluded. Participants received SBRT to the primary tumour (50-54 Gy in three to five fractions) followed by standard radiotherapy (planned up to 60 Gy in 30 2 Gy fractions) to the involved lymph nodes with concurrent platinum doublet chemotherapy (either paclitaxel 50 mg/m2 intravenously plus carboplatin area under the curve 2 mg/mL per min every 7 days for a total of six 1-week cycles or etoposide 50 mg/m2 intravenously on days 1-5 and days 29-33 plus cisplatin 50 mg/m2 intravenously on days 1, 8, 29, and 36 for two cycles of 4 weeks). An amendment to the protocol (Dec 11, 2017) permitted the administration of consolidation durvalumab at the discretion of the treating investigator. An additional protocol amendment on Jan 13, 2021, directed patients without disease progression after chemoradiotherapy to receive consolidation durvalumab (10 mg/kg intravenously on day 1 and day 15 of a 4-week cycle for up to 12 cycles or 1500 mg intravenously on day 1 of a 4-week cycle for up to 12 cycles). The primary endpoint was 1-year progression-free survival (per Response Evaluation Criteria in Solid Tumours version 1.1), assessed in all participants who received at least one fraction of SBRT and had radiological follow-up data up to 1 year. A 1-year progression-free survival rate of greater than 60% was required to reject the null hypothesis and show significant improvement in 1-year progression-free survival. One-sided exact binomial tests were used to compare the primary endpoint versus the historical control 1-year progression-free survival rate used to determine the sample size. Safety was assessed in all patients who received at least one fraction of SBRT. This study is registered with ClinicalTrials.gov, NCT03141359, and is closed to accrual.
Between May 11, 2017, and June 27, 2022, 61 patients were enrolled and received at least one dose of fractionated SBRT, of whom 59 were evaluable for the primary endpoint. Median age was 67 years (IQR 61-72), 28 (46%) of 61 were female, 33 (54%) were male, 51 (84%) were White, seven (11%) were Black, and three (5%) were of other or unknown race. Of the 61 patients enrolled, 47 received at least one dose of consolidation durvalumab. As of data cutoff (July 12, 2023), median follow-up was 29·5 months (IQR 14·9-47·1). 1-year progression-free survival was 62·7% (90% CI 51·2-73·2; one-sided p=0·39, compared with the historical control rate), with 37 of 59 evaluable participants progression free and alive 1 year after enrolment (n=14 progressed, n=8 died). The most common grade 3-4 treatment-related adverse events were decreased neutrophil count (nine [15%] of 61 patients), decreased white blood cell count (five [8%]), and anaemia (four [7%]). Treatment-related serious adverse events occurred in 11 (18%) of 61 patients, which included lung infection (three [5%]), pneumonitis (two [3%]), decreased neutrophil count (two [3%]), febrile neutropenia (two [3%]), and dyspnoea, hypoxia, respiratory failure, sinus tachycardia, bronchial infection, and acute kidney injury (each in one [2%] patient). Treatment-related deaths occurred in four (7%) of 61 patients (one each of respiratory failure, respiratory failure and dyspnoea, lung infection, and pneumonitis).
Although this study did not meet the primary endpoint, activity and safety profiles of primary lung tumour SBRT followed by concurrent mediastinal chemoradiotherapy were favourable compared with other modern trials treating locally advanced NSCLC with chemoradiotherapy. These findings serve as the basis for the ongoing randomised phase 3 study NRG Oncology LU008 (NCT05624996).
AstraZeneca and Atrium Health Levine Cancer Institute.
Heinzerling JH
,Mileham KF
,Robinson MM
,Symanowski JT
,Induru RR
,Brouse GM
,Corso CD
,Prabhu RS
,Haggstrom DE
,Moeller BJ
,Bobo WE
,Fasola CE
,Thakkar VV
,Pal SE
,Gregory JM
,Norek SL
,Begic XJ
,Kesarwala AH
,Burri SH
,Simone CB 2nd
... -
《-》