-
Undernutrition as a risk factor for tuberculosis disease.
Tuberculosis (TB) is a leading cause of mortality due to an infectious disease, with an estimated 1.6 million deaths due to TB in 2022. Approximately 25% of the global population has TB infection, giving rise to 10.6 million episodes of TB disease in 2022. Undernutrition is a key risk factor for TB and was linked to an estimated 2.2 million TB episodes in 2022, as outlined in the World Health Organization (WHO) Global Tuberculosis Report.
To determine the prognostic value of undernutrition in the general population of adults, adolescents, and children for predicting tuberculosis disease over any time period.
We searched the literature databases MEDLINE (via PubMed) and WHO Global Index Medicus, as well as the WHO International Clinical Trials Registry Platform (ICTRP) on 3 May 2023 (date of last search for all databases). We placed no restrictions on the language of publication.
We included retrospective and prospective cohort studies, irrespective of publication status or language. The target population comprised adults, adolescents, and children from diverse settings, encompassing outpatient and inpatient cohorts, with varying comorbidities and risk of exposure to tuberculosis.
We used standard Cochrane methodology and the Quality In Prognosis Studies (QUIPS) tool to assess the risk of bias of the studies. Prognostic factors included undernutrition, defined as wasting, stunting, and underweight, with specific measures such as body mass index (BMI) less than two standard deviations below the median for children and adolescents and low BMI scores (< 18.5) for adults and adolescents. Prognostication occurred at enrolment/baseline. The primary outcome was the incidence of TB disease. The secondary outcome was recurrent TB disease. We performed a random-effects meta-analysis for the adjusted hazard ratios (HR), risk ratios (RR), or odds ratios (OR), employing the restricted maximum likelihood estimation. We rated the certainty of the evidence using the GRADE approach.
We included 51 cohort studies with over 27 million participants from the six WHO regions. Sixteen large population-based studies were conducted in China, Singapore, South Korea, and the USA, and 25 studies focused on people living with HIV, which were mainly conducted in the African region. Most studies were in adults, four in children, and three in children and adults. Undernutrition as an exposure was usually defined according to standard criteria; however, the diagnosis of TB did not include a confirmatory culture or molecular diagnosis using a WHO-approved rapid diagnostic test in eight studies. The median follow-up time was 3.5 years, and the studies primarily reported an adjusted hazard ratio from a multivariable Cox-proportional hazard model. Hazard ratios (HR) The HR estimates represent the highest certainty of the evidence, explored through sensitivity analyses and excluding studies at high risk of bias. We present 95% confidence intervals (CI) and prediction intervals, which present between-study heterogeneity represented in a measurement of the variability of effect sizes (i.e. the interval within which the effect size of a new study would fall considering the same population of studies included in the meta-analysis). Undernutrition may increase the risk of TB disease (HR 2.23, 95% CI 1.83 to 2.72; prediction interval 0.98 to 5.05; 23 studies; 2,883,266 participants). The certainty of the evidence is low due to a moderate risk of bias across studies and inconsistency. When stratified by follow-up time, the results are more consistent across < 10 years follow-up (HR 2.02, 95% CI 1.74 to 2.34; prediction interval 1.20 to 3.39; 22 studies; 2,869,077 participants). This results in a moderate certainty of evidence due to a moderate risk of bias across studies. However, at 10 or more years of follow-up, we found only one study with a wider CI and higher HR (HR 12.43, 95% CI 5.74 to 26.91; 14,189 participants). The certainty of the evidence is low due to the moderate risk of bias and indirectness. Odds ratio (OR) Undernutrition may increase the odds of TB disease, but the results are uncertain (OR 1.56, 95% CI 1.13 to 2.17; prediction interval 0.61 to 3.99; 8 studies; 173,497 participants). Stratification by follow-up was not possible as all studies had a follow-up of < 10 years. The certainty of the evidence is very low due to the high risk of bias and inconsistency. Contour-enhanced funnel plots were not reported due to the few studies included. Risk ratio (RR) Undernutrition may increase the risk of TB disease (RR 1.95, 95% CI 1.72 to 2.20; prediction interval 1.49 to 2.55; 4 studies; 1,475,867 participants). Stratification by follow-up was not possible as all studies had a follow-up of < 10 years. The certainty of the evidence is low due to the high risk of bias. Contour-enhanced funnel plots were not reported due to the few studies included.
Undernutrition probably increases the risk of TB two-fold in the short term (< 10 years) and may also increase the risk in the long term (> 10 years). Policies targeted towards the reduction of the burden of undernutrition are not only needed to alleviate human suffering due to undernutrition and its many adverse consequences, but are also an important part of the critical measures for ending the TB epidemic by 2030. Large population-based cohorts, including those derived from high-quality national registries of exposures (undernutrition) and outcomes (TB disease), are needed to provide high-certainty estimates of this risk across different settings and populations, including low and middle-income countries from different WHO regions. Moreover, studies including children and adolescents and state-of-the-art methods for diagnosing TB would provide more up-to-date information relevant to practice and policy.
World Health Organization (203256442).
PROSPERO registration: CRD42023408807 Protocol: https://doi.org/10.1002/14651858.CD015890.
Franco JV
,Bongaerts B
,Metzendorf MI
,Risso A
,Guo Y
,Peña Silva L
,Boeckmann M
,Schlesinger S
,Damen JA
,Richter B
,Baddeley A
,Bastard M
,Carlqvist A
,Garcia-Casal MN
,Hemmingsen B
,Mavhunga F
,Manne-Goehler J
,Viney K
... -
《Cochrane Database of Systematic Reviews》
-
Diabetes as a risk factor for tuberculosis disease.
Franco JV
,Bongaerts B
,Metzendorf MI
,Risso A
,Guo Y
,Peña Silva L
,Boeckmann M
,Schlesinger S
,Damen JA
,Richter B
,Baddeley A
,Bastard M
,Carlqvist A
,Garcia-Casal MN
,Hemmingsen B
,Mavhunga F
,Manne-Goehler J
,Viney K
... -
《Cochrane Database of Systematic Reviews》
-
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.
About 20-30% of older adults (≥ 65 years old) experience one or more falls each year, and falls are associated with substantial burden to the health care system, individuals, and families from resulting injuries, fractures, and reduced functioning and quality of life. Many interventions for preventing falls have been studied, and their effectiveness, factors relevant to their implementation, and patient preferences may determine which interventions to use in primary care. The aim of this set of reviews was to inform recommendations by the Canadian Task Force on Preventive Health Care (task force) on fall prevention interventions. We undertook three systematic reviews to address questions about the following: (i) the benefits and harms of interventions, (ii) how patients weigh the potential outcomes (outcome valuation), and (iii) patient preferences for different types of interventions, and their attributes, shown to offer benefit (intervention preferences).
We searched four databases for benefits and harms (MEDLINE, Embase, AgeLine, CENTRAL, to August 25, 2023) and three for outcome valuation and intervention preferences (MEDLINE, PsycINFO, CINAHL, to June 9, 2023). For benefits and harms, we relied heavily on a previous review for studies published until 2016. We also searched trial registries, references of included studies, and recent reviews. Two reviewers independently screened studies. The population of interest was community-dwelling adults ≥ 65 years old. We did not limit eligibility by participant fall history. The task force rated several outcomes, decided on their eligibility, and provided input on the effect thresholds to apply for each outcome (fallers, falls, injurious fallers, fractures, hip fractures, functional status, health-related quality of life, long-term care admissions, adverse effects, serious adverse effects). For benefits and harms, we included a broad range of non-pharmacological interventions relevant to primary care. Although usual care was the main comparator of interest, we included studies comparing interventions head-to-head and conducted a network meta-analysis (NMAs) for each outcome, enabling analysis of interventions lacking direct comparisons to usual care. For benefits and harms, we included randomized controlled trials with a minimum 3-month follow-up and reporting on one of our fall outcomes (fallers, falls, injurious fallers); for the other questions, we preferred quantitative data but considered qualitative findings to fill gaps in evidence. No date limits were applied for benefits and harms, whereas for outcome valuation and intervention preferences we included studies published in 2000 or later. All data were extracted by one trained reviewer and verified for accuracy and completeness. For benefits and harms, we relied on the previous review team's risk-of-bias assessments for benefit outcomes, but otherwise, two reviewers independently assessed the risk of bias (within and across study). For the other questions, one reviewer verified another's assessments. Consensus was used, with adjudication by a lead author when necessary. A coding framework, modified from the ProFANE taxonomy, classified interventions and their attributes (e.g., supervision, delivery format, duration/intensity). For benefit outcomes, we employed random-effects NMA using a frequentist approach and a consistency model. Transitivity and coherence were assessed using meta-regressions and global and local coherence tests, as well as through graphical display and descriptive data on the composition of the nodes with respect to major pre-planned effect modifiers. We assessed heterogeneity using prediction intervals. For intervention-related adverse effects, we pooled proportions except for vitamin D for which we considered data in the control groups and undertook random-effects pairwise meta-analysis using a relative risk (any adverse effects) or risk difference (serious adverse effects). For outcome valuation, we pooled disutilities (representing the impact of a negative event, e.g. fall, on one's usual quality of life, with 0 = no impact and 1 = death and ~ 0.05 indicating important disutility) from the EQ-5D utility measurement using the inverse variance method and a random-effects model and explored heterogeneity. When studies only reported other data, we compared the findings with our main analysis. For intervention preferences, we used a coding schema identifying whether there were strong, clear, no, or variable preferences within, and then across, studies. We assessed the certainty of evidence for each outcome using CINeMA for benefit outcomes and GRADE for all other outcomes.
A total of 290 studies were included across the reviews, with two studies included in multiple questions. For benefits and harms, we included 219 trials reporting on 167,864 participants and created 59 interventions (nodes). Transitivity and coherence were assessed as adequate. Across eight NMAs, the number of contributing trials ranged between 19 and 173, and the number of interventions ranged from 19 to 57. Approximately, half of the interventions in each network had at least low certainty for benefit. The fallers outcome had the highest number of interventions with moderate certainty for benefit (18/57). For the non-fall outcomes (fractures, hip fracture, long-term care [LTC] admission, functional status, health-related quality of life), many interventions had very low certainty evidence, often from lack of data. We prioritized findings from 21 interventions where there was moderate certainty for at least some benefit. Fourteen of these had a focus on exercise, the majority being supervised (for > 2 sessions) and of long duration (> 3 months), and with balance/resistance and group Tai Chi interventions generally having the most outcomes with at least low certainty for benefit. None of the interventions having moderate certainty evidence focused on walking. Whole-body vibration or home-hazard assessment (HHA) plus exercise provided to everyone showed moderate certainty for some benefit. No multifactorial intervention alone showed moderate certainty for any benefit. Six interventions only had very-low certainty evidence for the benefit outcomes. Two interventions had moderate certainty of harmful effects for at least one benefit outcome, though the populations across studies were at high risk for falls. Vitamin D and most single-component exercise interventions are probably associated with minimal adverse effects. Some uncertainty exists about possible adverse effects from other interventions. For outcome valuation, we included 44 studies of which 34 reported EQ-5D disutilities. Admission to long-term care had the highest disutility (1.0), but the evidence was rated as low certainty. Both fall-related hip (moderate certainty) and non-hip (low certainty) fracture may result in substantial disutility (0.53 and 0.57) in the first 3 months after injury. Disutility for both hip and non-hip fractures is probably lower 12 months after injury (0.16 and 0.19, with high and moderate certainty, respectively) compared to within the first 3 months. No study measured the disutility of an injurious fall. Fractures are probably more important than either falls (0.09 over 12 months) or functional status (0.12). Functional status may be somewhat more important than falls. For intervention preferences, 29 studies (9 qualitative) reported on 17 comparisons among single-component interventions showing benefit. Exercise interventions focusing on balance and/or resistance training appear to be clearly preferred over Tai Chi and other forms of exercise (e.g., yoga, aerobic). For exercise programs in general, there is probably variability among people in whether they prefer group or individual delivery, though there was high certainty that individual was preferred over group delivery of balance/resistance programs. Balance/resistance exercise may be preferred over education, though the evidence was low certainty. There was low certainty for a slight preference for education over cognitive-behavioral therapy, and group education may be preferred over individual education.
To prevent falls among community-dwelling older adults, evidence is most certain for benefit, at least over 1-2 years, from supervised, long-duration balance/resistance and group Tai Chi interventions, whole-body vibration, high-intensity/dose education or cognitive-behavioral therapy, and interventions of comprehensive multifactorial assessment with targeted treatment plus HHA, HHA plus exercise, or education provided to everyone. Adding other interventions to exercise does not appear to substantially increase benefits. Overall, effects appear most applicable to those with elevated fall risk. Choice among effective interventions that are available may best depend on individual patient preferences, though when implementing new balance/resistance programs delivering individual over group sessions when feasible may be most acceptable. Data on more patient-important outcomes including fall-related fractures and adverse effects would be beneficial, as would studies focusing on equity-deserving populations and on programs delivered virtually.
Not registered.
Pillay J
,Gaudet LA
,Saba S
,Vandermeer B
,Ashiq AR
,Wingert A
,Hartling L
... -
《Systematic Reviews》
-
Interventions to prevent surgical site infection in adults undergoing cardiac surgery.
Surgical site infection (SSI) is a common type of hospital-acquired infection and affects up to a third of patients following surgical procedures. It is associated with significant mortality and morbidity. In the United Kingdom alone, it is estimated to add another £30 million to the cost of adult cardiac surgery. Although generic guidance for SSI prevention exists, this is not specific to adult cardiac surgery. Furthermore, many of the risk factors for SSI are prevalent within the cardiac surgery population. Despite this, there is currently no standard of care for SSI prevention in adults undergoing cardiac surgery throughout the preoperative, intraoperative and postoperative periods of care, with variations in practice existing throughout from risk stratification, decontamination strategies and surveillance.
Primary objective: to assess the clinical effectiveness of pre-, intra-, and postoperative interventions in the prevention of cardiac SSI.
(i) to evaluate the effects of SSI prevention interventions on morbidity, mortality, and resource use; (ii) to evaluate the effects of SSI prevention care bundles on morbidity, mortality, and resource use.
We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE (Ovid, from inception) and Embase (Ovid, from inception) on 31 May 2021.
gov and the WHO International Clinical Trials Registry Platform (ICTRP) were also searched for ongoing or unpublished trials on 21 May 2021. No language restrictions were imposed.
We included RCTs evaluating interventions to reduce SSI in adults (≥ 18 years of age) who have undergone any cardiac surgery.
We followed the methods as per our published Cochrane protocol. Our primary outcome was surgical site infection. Our secondary outcomes were all-cause mortality, reoperation for SSI, hospital length of stay, hospital readmissions for SSI, healthcare costs and cost-effectiveness, quality of life (QoL), and adverse effects. We used the GRADE approach to assess the certainty of evidence.
A total of 118 studies involving 51,854 participants were included. Twenty-two interventions to reduce SSI in adults undergoing cardiac surgery were identified. The risk of bias was judged to be high in the majority of studies. There was heterogeneity in the study populations and interventions; consequently, meta-analysis was not appropriate for many of the comparisons and these are presented as narrative summaries. We focused our reporting of findings on four comparisons deemed to be of great clinical relevance by all review authors. Decolonisation versus no decolonisation Pooled data from three studies (n = 1564) using preoperative topical oral/nasal decontamination in all patients demonstrated an uncertain direction of treatment effect in relation to total SSI (RR 0.98, 95% CI 0.70 to 1.36; I2 = 0%; very low-certainty evidence). A single study reported that decolonisation likely results in little to no difference in superficial SSI (RR 1.35, 95% CI 0.84 to 2.15; moderate-certainty evidence) and a reduction in deep SSI (RR 0.36, 95% CI 0.17 to 0.77; high-certainty evidence). The evidence on all-cause mortality from three studies (n = 1564) is very uncertain (RR 0.66, 95% CI 0.24 to 1.84; I2 = 49%; very low-certainty evidence). A single study (n = 954) demonstrated that decolonisation may result in little to no difference in hospital readmission for SSI (RR 0.80, 95% CI 0.44 to 1.45; low-certainty evidence). A single study (n = 954) reported one case of temporary discolouration of teeth in the decolonisation arm (low-certainty-evidence. Reoperation for SSI was not reported. Tight glucose control versus standard glucose control Pooled data from seven studies (n = 880) showed that tight glucose control may reduce total SSI, but the evidence is very uncertain (RR 0.41, 95% CI 0.19 to 0.85; I2 = 29%; numbers need to treat to benefit (NNTB) = 13; very-low certainty evidence). Pooled data from seven studies (n = 3334) showed tight glucose control may reduce all-cause mortality, but the evidence is very uncertain (RR 0.61, 95% CI 0.41 to 0.91; I2 = 0%; very low-certainty evidence). Based on four studies (n = 2793), there may be little to no difference in episodes of hypoglycaemia between tight control vs. standard control, but the evidence is very uncertain (RR 2.12, 95% CI 0.51 to 8.76; I2 = 72%; very low-certainty evidence). No studies reported superficial/deep SSI, reoperation for SSI, or hospital readmission for SSI. Negative pressure wound therapy (NPWT) versus standard dressings NPWT was assessed in two studies (n = 144) and it may reduce total SSI, but the evidence is very uncertain (RR 0.17, 95% CI 0.03 to 0.97; I2 = 0%; NNTB = 10; very low-certainty evidence). A single study (n = 80) reported reoperation for SSI. The relative effect could not be estimated. The certainty of evidence was judged to be very low. No studies reported superficial/deep SSI, all-cause mortality, hospital readmission for SSI, or adverse effects. Topical antimicrobials versus no topical antimicrobials Five studies (n = 5382) evaluated topical gentamicin sponge, which may reduce total SSI (RR 0.62, 95% CI 0.46 to 0.84; I2 = 48%; NNTB = 32), superficial SSI (RR 0.60, 95% CI 0.37 to 0.98; I2 = 69%), and deep SSI (RR 0.67, 95% CI 0.47 to 0.96; I2 = 5%; low-certainty evidence. Four studies (n = 4662) demonstrated that topical gentamicin sponge may result in little to no difference in all-cause mortality, but the evidence is very uncertain (RR 0.96, 95% CI 0.65 to 1.42; I2 = 0%; very low-certainty evidence). Reoperation for SSI, hospital readmission for SSI, and adverse effects were not reported in any included studies.
This review provides the broadest and most recent review of the current evidence base for interventions to reduce SSI in adults undergoing cardiac surgery. Twenty-one interventions were identified across the perioperative period. Evidence is of low to very low certainty primarily due to significant heterogeneity in how interventions were implemented and the definitions of SSI used. Knowledge gaps have been identified across a number of practices that should represent key areas for future research. Efforts to standardise SSI outcome reporting are warranted.
Cardiothoracic Interdisciplinary Research Network
,Rogers LJ
,Vaja R
,Bleetman D
,Ali JM
,Rochon M
,Sanders J
,Tanner J
,Lamagni TL
,Talukder S
,Quijano-Campos JC
,Lai F
,Loubani M
,Murphy GJ
... -
《Cochrane Database of Systematic Reviews》
-
Tamoxifen for adults with hepatocellular carcinoma.
Hepatocellular carcinoma is the most common type of liver cancer, accounting for 70% to 85% of individuals with primary liver cancer. Tamoxifen has been evaluated in randomised clinical trials in people with hepatocellular cancer. The reported results have been inconsistent.
To evaluate the benefits and harms of tamoxifen or tamoxifen plus any other anticancer drugs compared with no intervention, placebo, any type of standard care, or alternative treatment in adults with hepatocellular carcinoma, irrespective of sex, administered dose, type of formulation, and duration of treatment.
We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and major trials registries, and handsearched reference lists up to 26 March 2024.
Parallel-group randomised clinical trials including adults (aged 18 years and above) diagnosed with advanced or unresectable hepatocellular carcinoma. Had we found cross-over trials, we would have included only the first trial phase. We did not consider data from quasi-randomised trials for analysis.
Our critical outcomes were all-cause mortality, serious adverse events, and health-related quality of life. Our important outcomes were disease progression, and adverse events considered non-serious.
We assessed risk of bias using the RoB 2 tool.
We used standard Cochrane methods and Review Manager. We meta-analysed the outcome data at the longest follow-up. We presented the results of dichotomous outcomes as risk ratios (RR) and continuous data as mean difference (MD), with 95% confidence intervals (CI) using the random-effects model. We summarised the certainty of evidence using GRADE.
We included 10 trials that randomised 1715 participants with advanced, unresectable, or terminal stage hepatocellular carcinoma. Six were single-centre trials conducted in Hong Kong, Italy, and Spain, while three were conducted as multicentre trials in single countries (France, Italy, and Spain), and one trial was conducted in nine countries in the Asia-Pacific region (Australia, Hong Kong, Indonesia, Malaysia, Myanmar, New Zealand, Singapore, South Korea, and Thailand). The experimental intervention was tamoxifen in all trials. The control interventions were no intervention (three trials), placebo (six trials), and symptomatic treatment (one trial). Co-interventions were best supportive care (three trials) and standard care (one trial). The remaining six trials did not provide this information. The number of participants in the trials ranged from 22 to 496 (median 99), mean age was 63.7 (standard deviation 4.18) years, and mean proportion of men was 74.7% (standard deviation 42%). Follow-up was three months to five years.
Ten trials evaluated oral tamoxifen at five different dosages (ranging from 20 mg per day to 120 mg per day). All trials investigated one or more of our outcomes. We performed meta-analyses when at least two trials assessed similar types of tamoxifen versus similar control interventions. Eight trials evaluated all-cause mortality at varied follow-up points. Tamoxifen versus the control interventions (i.e. no treatment, placebo, and symptomatic treatment) results in little to no difference in mortality between one and five years (RR 0.99, 95% CI 0.92 to 1.06; 8 trials, 1364 participants; low-certainty evidence). In total, 488/682 (71.5%) participants died in the tamoxifen groups versus 487/682 (71.4%) in the control groups. The separate analysis results for one, between two and three, and five years were comparable to the analysis result for all follow-up periods taken together. The evidence is very uncertain about the effect of tamoxifen versus no treatment on serious adverse events at one-year follow-up (RR 0.44, 95% CI 0.19 to 1.06; 1 trial, 36 participants; very low-certainty evidence). A total of 5/20 (25.0%) participants in the tamoxifen group versus 9/16 (56.3%) participants in the control group experienced serious adverse events. One trial measured health-related quality of life at baseline and at nine months' follow-up, using the Spitzer Quality of Life Index. The evidence is very uncertain about the effect of tamoxifen versus no treatment on health-related quality of life (MD 0.03, 95% CI -0.45 to 0.51; 1 trial, 420 participants; very low-certainty evidence). A second trial found no appreciable difference in global health-related quality of life scores. No further data were provided. Tamoxifen versus control interventions (i.e. no treatment, placebo, or symptomatic treatment) results in little to no difference in disease progression between one and five years' follow-up (RR 1.02, 95% CI 0.91 to 1.14; 4 trials, 720 participants; low-certainty evidence). A total of 191/358 (53.3%) participants in the tamoxifen group versus 198/362 (54.7%) participants in the control group had progression of hepatocellular carcinoma. Tamoxifen versus control interventions (i.e. no treatment or placebo) may have little to no effect on adverse events considered non-serious during treatment, but the evidence is very uncertain (RR 1.17, 95% CI 0.45 to 3.06; 4 trials, 462 participants; very low-certainty evidence). A total of 10/265 (3.8%) participants in the tamoxifen group versus 6/197 (3.0%) participants in the control group had adverse events considered non-serious. We identified no trials with participants diagnosed with early stages of hepatocellular carcinoma. We identified no ongoing trials.
Based on the low- and very low-certainty evidence, the effects of tamoxifen on all-cause mortality, disease progression, serious adverse events, health-related quality of life, and adverse events considered non-serious in adults with advanced, unresectable, or terminal stage hepatocellular carcinoma when compared with no intervention, placebo, or symptomatic treatment could not be established. Our findings are mostly based on trials at high risk of bias with insufficient power (fewer than 100 participants), and a lack of trial data on clinically important outcomes. Therefore, firm conclusions cannot be drawn. Trials comparing tamoxifen administered with any other anticancer drug versus standard care, usual care, or alternative treatment as control interventions were lacking. Evidence on the benefits and harms of tamoxifen in participants at the early stages of hepatocellular carcinoma was also lacking.
This Cochrane review had no dedicated funding.
Protocol available via DOI: 10.1002/14651858.CD014869.
Naing C
,Ni H
,Aung HH
《Cochrane Database of Systematic Reviews》