-
Androgens (dehydroepiandrosterone or testosterone) for women undergoing assisted reproduction.
Practitioners in the field of assisted reproductive technology (ART) continually seek alternative or adjunct treatments to improve ART outcomes. This Cochrane review investigates the adjunct use of synthetic versions of two naturally produced hormones, dehydroepiandrosterone (DHEA) and testosterone (T), in assisted reproduction. Steroid hormones are proposed to increase conception rates by positively affecting follicular response to gonadotrophin stimulation. This may lead to a greater oocyte yield and, subsequently, an increased chance of pregnancy.
To assess the effectiveness and safety of DHEA and T as pre- or co-treatments in infertile women undergoing assisted reproduction.
We searched the following electronic databases up to 8 January 2024: the Gynaecology and Fertility Group (CGF) Specialised Register, CENTRAL, MEDLINE, Embase, PsycINFO, and trial registries for ongoing trials. We also searched citation indexes, Web of Science, PubMed, and OpenGrey. We searched the reference lists of relevant studies and contacted experts in the field for any additional trials. There were no language restrictions.
Randomised controlled trials (RCTs) comparing DHEA or T as an adjunct treatment to any other active intervention, placebo, or no treatment in women undergoing assisted reproduction.
Two review authors independently selected studies, extracted relevant data, and assessed risk of bias. We pooled data from studies using fixed-effect models. We calculated odds ratios (ORs) for each dichotomous outcome. Analyses were stratified by type of treatment. We assessed the certainty of evidence for the main findings using GRADE methods.
We included 28 RCTs. There were 1533 women in the intervention groups and 1469 in the control groups. Apart from three trials, trial participants were women identified as 'poor responders' to standard in vitro fertilisation (IVF) protocols. The included trials compared either T or DHEA treatment with placebo or no treatment. Pre-treatment with DHEA versus placebo/no treatment: DHEA likely results in little to no difference in live birth/ongoing pregnancy rates (OR 1.30, 95% confidence interval (CI) 0.95 to 1.76; I² = 16%, 9 RCTs, N = 1433, moderate certainty evidence). This suggests that in women with a 12% chance of live birth/ongoing pregnancy with placebo or no treatment, the live birth/ongoing pregnancy rate in women using DHEA will be between 12% and 20%. DHEA likely does not decrease miscarriage rates (OR 0.85, 95% CI 0.53 to 1.37; I² = 0%, 10 RCTs, N =1601, moderate certainty evidence). DHEA likely results in little to no difference in clinical pregnancy rates (OR 1.18, 95% CI 0.93 to 1.49; I² = 0%, 13 RCTs, N = 1886, moderate certainty evidence). This suggests that in women with a 17% chance of clinical pregnancy with placebo or no treatment, the clinical pregnancy rate in women using DHEA will be between 16% and 24%. We are very uncertain about the effect of DHEA on multiple pregnancy (OR 3.05, 95% CI 0.47 to 19.66; 7 RCTs, N = 463, very low certainty evidence). Pre-treatment with T versus placebo/no treatment: T likely improves live birth rates (OR 2.53, 95% CI 1.61 to 3.99; I² = 0%, 8 RCTs, N = 716, moderate certainty evidence). This suggests that in women with a 10% chance of live birth with placebo or no treatment, the live birth rate in women using T will be between 15% and 30%. T likely does not decrease miscarriage rates (OR 1.63, 95% CI 0.76 to 3.51; I² = 0%, 9 RCTs, N = 755, moderate certainty evidence). T likely increases clinical pregnancy rates (OR 2.17, 95% CI 1.54 to 3.06; I² = 0%, 13 RCTs, N = 1152, moderate certainty evidence). This suggests that in women with a 12% chance of clinical pregnancy with placebo or no treatment, the clinical pregnancy rate in women using T will be between 17% and 29%. We are very uncertain about the effect of T on multiple pregnancy (OR 2.56, 95% CI 0.59 to 11.20; 5 RCTs, N = 449, very low certainty evidence). We are uncertain about the effect of T versus estradiol or T versus estradiol + oral contraceptive pills. The certainty of the evidence was moderate to very low, the main limitations being lack of blinding in the included trials, inadequate reporting of study methods, and low event and sample sizes in the trials. Data on adverse events were sparse; any reported events were minor.
Pre-treatment with T likely improves, and pre-treatment with DHEA likely results in little to no difference, in live birth and clinical pregnancy rates in women undergoing IVF who have been identified as poor responders. DHEA and T probably do not decrease miscarriage rates in women under IVF treatment. The effects of DHEA and T on multiple pregnancy are uncertain. Research is needed to identify the optimal duration of treatment with T. Future studies should include data collection on adverse events and multiple pregnancy.
Naik S
,Lepine S
,Nagels HE
,Siristatidis CS
,Kroon B
,McDowell S
... -
《Cochrane Database of Systematic Reviews》
-
Androgens (dehydroepiandrosterone or testosterone) for women undergoing assisted reproduction.
Nagels HE
,Rishworth JR
,Siristatidis CS
,Kroon B
... -
《Cochrane Database of Systematic Reviews》
-
Autologous platelet-rich plasma for assisted reproduction.
Autologous platelet-rich plasma (PRP) consists of plasma and a concentrate of platelets extracted from fresh whole blood of the person being treated. Research has suggested that intrauterine or intraovarian infusion/injection of PRP before embryo transfer may improve endometrial receptivity and response to ovarian stimulation in women undergoing assisted reproduction. We compared these interventions to standard treatment, placebo, or other interventions (mechanical or pharmacological).
To assess the effectiveness and safety of intrauterine and intraovarian infusion/injection of platelet-rich plasma in infertile women undergoing assisted reproductive technology cycles.
We searched the Cochrane Gynaecology and Fertility Group's Specialised Register, CENTRAL, MEDLINE, Embase, and the Epistemonikos database in January 2023. We also searched the reference lists of relevant articles and contacted the trial authors and experts in the field for any additional trials.
We included randomized controlled trials (RCTs) that evaluated the application of PRP in the uterine cavity, ovaries, or both versus no intervention, placebo, or any other intervention (either mechanical or pharmacological) in women undergoing in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) cycles.
We followed standard methodological procedures recommended by Cochrane, including use of the updated risk of bias tool (RoB 2). The primary outcomes were live birth (or ongoing pregnancy) and miscarriage. The secondary outcomes were clinical pregnancy, complications of the procedure, multiple pregnancy, ectopic pregnancy, fetal growth restriction, preterm delivery, and fetal abnormality. We estimated the average effect of the interventions by fitting a Der Simonian-Laird's random-effects meta-analysis model. We reported pooled odds ratios (ORs) with 95% confidence intervals (CIs). We restricted the primary analyses to trials at low risk of bias for the outcomes and performed sensitivity analyses that included all studies.
We included 12 parallel-group RCTs that recruited a total of 1069 women. We identified three different comparison groups. Using GRADE, we assessed the certainty of evidence as very low for almost all outcomes. Intrauterine injection/infusion of platelet-rich plasma versus no intervention or placebo Nine studies evaluated intrauterine PRP versus no intervention or placebo. Eight included women with at least two or three previous implantation failures. Only one was assessed at low risk of bias for each outcome. This study provided very low-certainty evidence about the effect of intrauterine PRP injection versus no intervention on live birth (OR 1.10, 95% CI 0.38 to 3.14; 94 women) and miscarriage (OR 0.96, 95% CI 0.13 to 7.09; 94 women). If the likelihood of live birth following no intervention is assumed to be 17%, then the likelihood following intrauterine PRP would be 7% to 40%; and if the risk of miscarriage following no intervention is 4%, then the risk following intrauterine PRP would be 1% to 24%. When we analyzed all studies (regardless of risk of bias), we found very low-certainty evidence about the effect of intrauterine PRP compared with placebo or no intervention on live birth or ongoing pregnancy (OR 2.38, 95% CI 1.16 to 4.86; I² = 54%; 6 studies, 564 women) and miscarriage (OR 1.54, 95% CI 0.59 to 4.01; I² = 0%; 5 studies, 504 women). The study at low risk of bias provided very low-certainty evidence about the effect of intrauterine PRP compared with no intervention on clinical pregnancy (OR 1.55, 95% CI 0.64 to 3.76; 94 women) and ectopic pregnancy (OR 2.94, 95% CI 0.12 to 73.95; 94 women). The synthesis of all studies provided very low-certainty evidence about the effect of intrauterine PRP compared with placebo or no intervention on clinical pregnancy (OR 2.22, 95% CI 1.50 to 3.27; I² = 24%; 9 studies, 824 women), multiple pregnancy (OR 2.68, 95% CI 0.81 to 8.88; I² = 0%; 2 studies, 240 women), and ectopic pregnancy (OR 2.94, 95% CI 0.12 to 73.95; 1 study, 94 women; very low-certainty evidence). Intrauterine infusion of PRP may increase the risk of preterm delivery compared with no intervention (OR 8.02, 95% CI 1.72 to 37.33; 1 study, 120 women; low-certainty evidence). No studies reported pain, infection, allergic reaction, fetal growth restriction, or fetal abnormality. Intrauterine infusion of platelet-rich plasma versus intrauterine infusion of granulocyte colony-stimulating factor Two RCTs evaluated intrauterine PRP versus intrauterine granulocyte colony-stimulating factor (G-CSF); both included women with thin endometrium, and neither was judged at low risk of bias for any outcome. We are uncertain about the effect of intrauterine PRP compared with intrauterine G-CSF on live birth (OR 0.88, 95% CI 0.43 to 1.81; 1 study, 132 women; very low-certainty evidence), miscarriage (OR 1.94, 95% CI 0.63 to 5.96; 1 study, 132 women; very low-certainty evidence), and clinical pregnancy (OR 1.24, 95% CI 0.66 to 2.35; 2 studies, 172 women; very low-certainty evidence). Neither study reported adverse outcomes other than miscarriage. Intraovarian injection of platelet-rich plasma versus no intervention One RCT evaluated PRP injection into both ovaries versus no intervention; it was judged at high risk of bias for the two outcomes it reported. We are uncertain about the effect of intraovarian PRP injection compared with no intervention on ongoing pregnancy (OR 1.09, 95% CI 0.33 to 3.63; 73 women; very low-certainty evidence) and clinical pregnancy (OR 0.90, 95% CI 0.31 to 2.60; 73 women; very low-certainty evidence). The study examined no safety outcomes.
We are uncertain about the effect of intrauterine or intraovarian administration of PRP on outcomes of assisted reproduction technology in infertile women. The pooled results should be interpreted with caution. Only one of the 12 included studies was judged at low risk of bias. Other limitations of the included trials were failure to report live birth, poor reporting of methods, lack of prospective protocol registration, low precision due to the small number of enrolled participants, indirectness due to the specific subpopulations and settings studied, and insufficient or absent safety data.
Vaidakis D
,Papapanou M
,Siristatidis CS
《Cochrane Database of Systematic Reviews》
-
Endometrial injection of embryo culture supernatant for subfertile women in assisted reproduction.
Despite substantial improvements in the success of assisted reproduction techniques (ART), live birth rates may remain consistently low, and practitioners may look for innovative treatments to improve the outcomes. The injection of embryo culture supernatant in the endometrial cavity can be undertaken at various time intervals before embryo transfer. It provides an altered endometrial environment through the secretion of factors considered to facilitate implantation. It is proposed that injection of the supernatant into the endometrial cavity prior to embryo transfer will stimulate the endometrium and provide better conditions for implantation to take place. An increased implantation rate would subsequently increase rates of clinical pregnancy and live birth, but current robust evidence on the efficacy of injected embryo culture supernatant is lacking.
To evaluate the effectiveness and safety of endometrial injection of embryo culture supernatant before embryo transfer in women undergoing ART.
Our search strategies were designed with the help of the Cochrane Gynaecology and Fertility Group Information Specialist. We sought to identify all published and unpublished randomised controlled trials (RCTs) meeting inclusion criteria. Searches were performed on 2 December 2019. We searched the Cochrane Gynaecology and Fertility Group Specialised Register of controlled trials, CENTRAL, MEDLINE, Embase, CINAHL, trials registries and grey literature. We made further searches in the UK National Institute for Health and Care Excellence (NICE) fertility assessment and treatment guidelines. We handsearched reference lists of relevant systematic reviews and RCTs, together with searches of PubMed and Google for any recent trials that have not yet been indexed in the major databases. We had no language or location restrictions.
We included RCTs testing the use of endometrial injection of embryo culture supernatant before embryo transfer during an ART cycle, compared with the non-use of this intervention, the use of placebo or the use of any other similar drug.
Two review authors independently selected studies, assessed risk of bias, extracted data from studies and attempted to contact the authors where data were missing. We pooled studies using a fixed-effect model. Our primary outcomes were live birth/ongoing pregnancy and miscarriage. We performed statistical analysis using Review Manager 5. We assessed evidence quality using GRADE methods.
We found five RCTs suitable for inclusion in the review (526 women analysed). We made two comparisons: embryo culture supernatant use versus standard care or no intervention; and embryo culture supernatant use versus culture medium. All studies were published as full-text articles. Data derived from the reports or through direct communication with investigators were available for the final meta-analysis performed. The GRADE evidence quality of studies ranged from very low-quality to moderate-quality. Factors reducing evidence quality included high risk of bias due to lack of blinding, unclear risk of publication bias and selective outcome reporting, serious inconsistency among study outcomes, and serious imprecision due to wide confidence intervals (CIs) and low numbers of events. Comparison 1. Endometrial injection of embryo culture supernatant before embryo transfer versus standard care or no intervention: One study reported live birth only and two reported the composite outcome live birth and ongoing pregnancy. We are uncertain whether endometrial injection of embryo culture supernatant before embryo transfer during an ART cycle improves live birth/ongoing pregnancy rates compared to no intervention (odds ratio (OR) 1.11, 95% CI 0.73 to 1.70; 3 RCTs; n = 340, I2 = 84%; very low-quality evidence). Results suggest that if the chance of live birth/ongoing pregnancy following placebo or no treatment is assumed to be 42%, the chance following the endometrial injection of embryo culture supernatant before embryo transfer would vary between 22% and 81%. We are also uncertain whether the endometrial injection of embryo culture supernatant could decrease miscarriage rates, compared to no intervention (OR 0.89, 95% CI 0.44 to 1.78, 4 RCTs, n = 430, I2 = 58%, very low-quality evidence). Results suggest that if the chance of miscarriage following placebo or no treatment is assumed to be 9%, the chance following injection of embryo culture supernatant would vary between 3% and 30%. Concerning the secondary outcomes, we are uncertain whether the injection of embryo culture supernatant prior to embryo transfer could increase clinical pregnancy rates (OR 1.13, 95% CI 0.80 to 1.61; 5 RCTs; n = 526, I2 = 0%; very low-quality evidence), decrease ectopic pregnancy rates (OR 0.32, 95% CI 0.01 to 8.24; n = 250; 2 RCTs; I2 = 41%; very low-quality evidence), decrease multiple pregnancy rates (OR 0.70, 95% CI 0.26 to 1.83; 2 RCTs; n = 150; I2 = 63%; very low-quality evidence), or decrease preterm delivery rates (OR 0.63, 95% CI 0.17 to 2.42; 1 RCT; n = 90; I2 = 0%; very low-quality evidence), compared to no intervention. Finally, there may have been little or no difference in foetal abnormality rates between the two groups (OR 3.10, 95% CI 0.12 to 79.23; 1 RCT; n = 60; I2 = 0%; low-quality evidence). Comparison 2. Endometrial injection of embryo culture supernatant versus endometrial injection of culture medium before embryo transfer We are uncertain whether the use of embryo culture supernatant improves clinical pregnancy rates, compared to the use of culture medium (OR 1.09, 95% CI 0.48 to 2.46; n = 96; 1 RCT; very low-quality evidence). No study reported live birth/ongoing pregnancy, miscarriage, ectopic or multiple pregnancy, preterm delivery or foetal abnormalities.
We are uncertain whether the addition of endometrial injection of embryo culture supernatant before embryo transfer as a routine method for the treatment of women undergoing ART can improve pregnancy outcomes. This conclusion is based on current available data from five RCTs, with evidence quality ranging from very low to moderate across studies. Further large well-designed RCTs reporting on live births and adverse clinical outcomes are still required to clarify the exact role of endometrial injection of embryo culture supernatant before embryo transfer.
Siristatidis CS
,Sertedaki E
,Karageorgiou V
,Vaidakis D
... -
《Cochrane Database of Systematic Reviews》
-
Growth hormone for in vitro fertilisation (IVF).
Sood A
,Mohiyiddeen G
,Ahmad G
,Fitzgerald C
,Watson A
,Mohiyiddeen L
... -
《Cochrane Database of Systematic Reviews》