Hua-Shi-Bai-Du decoction inactivates NLRP3 inflammasome through inhibiting PDE4B in macrophages and ameliorates mouse acute lung injury.
Hua-Shi-Bai-Du decoction (HSBD) exerts significant effects on the prevention and treatment of COVID-19 in China. The activation of the NLRP3 inflammasome of macrophages plays a vital role in COVID-19 pathology. However, no previous studies have focused on this pathological process to explore the effect of HSBD.
Our aim is to uncover the effect of HSBD on NLRP3 inflammasome activation and the underlying mechanisms.
The NLRP3-activated J774A.1 cells primed by LPS and activated by nigericin/ATP/MSU were used to evaluate NLRP3 activation in vitro. ASC oligomerization and speck formation were assessed by western blot and immunofluorescence imaging. Intracellular K+ levels were determined by the colorimetric assay. Mitochondrial ROS (mtROS) level was detected by the flow cytometry and the fluorescence spectrophotometry. The intracellular cAMP level was determined by chemiluminescence method and ELISA, while phosphodiesterase (PDE) activity was measured using the fluorescent substrate MANT-cAMP. siRNA was applied to knockdown PDE4B. Two in vivo mouse models, MSU-induced peritonitis and LPS-induced acute lung injury (ALI), were used to evaluate the effects of HSBD on IL-1β and other inflammatory cytokines. Pathological changes in lung tissue were observed by histopathological examination.
HSBD not only decreased supernatant IL-1β, caspase-1 p20, and cleaved gasdermin D (GSDMD) in NLRP3-activated J774A.1 cells, but also reduced IL-1β in the peritoneal lavage fluid of mice with MSU-induced peritonitis, demonstrating the suppressive effect on NLRP3 inflammasome activation. The mechanism study showed that HSBD blocked ASC oligomerization and speck formation without affecting K+ efflux or mtROS production. Furthermore, it prevented the decrease of intracellular cAMP by inhibiting PDE4B activity. And in the PDE4B-deficient cells, its suppressive effect on IL-1β release was abolished. In LPS-induced ALI mice, oral administration of HSBD decreased several proinflammatory cytokines (IL-1β, IL-6, TNF-α, and CXCL-1) and attenuated the pathological damage to the lung.
HSBD suppresses the activation of NLRP3 inflammasome by inhibiting PDE4B activity to counteract the decrease of intracellular cAMP, thereby blocking ASC oligomerization in macrophages. Our findings may provide new insight into the clinical effets of HSBD for the treatment of COVID-19.
Li X
,Li W
,Zang C
,Yan J
,Cai M
,Liu Z
,Cai R
,Gao Y
,Qi Y
... -
《-》
Geranylgeranyl diphosphate synthase 1 knockdown suppresses NLRP3 inflammasome activity via promoting autophagy in sepsis-induced acute lung injury.
NOD-like receptor protein 3 (NLRP3) inflammasome activation has emerged as a crucial contributor to sepsis-induced lung injury. Geranylgeranyl diphosphate synthase 1 (GGPPS1) reportedly exerts the pro-inflammatory capability via activation of NLRP3 inflammasome. However, little is known about the role and mechanism of GGPPS1 in sepsis-induced lung injury.
Mice underwent cecal ligation and puncture (CLP) surgery to establish the in vivo model of sepsis. The lung injury of mice was assessed by analyzing the histological changes, the lung wet/dry ratio, PaO2/FiO2 ratio, myeloperoxidase (MPO) activity, total protein content, total cell, and polymorphonuclear leukocyte counts. Mouse alveolar macrophages MH-S were exposed to LPS for developing in vitro model of sepsis. The mRNA and protein expression levels of GGPPS1, beclin-1, and autophagy and inflammasome-related genes were detected using quantitative reverse transcription-polymerase chain reaction and western blot assays. Enzyme-linked immunosorbent assay was conducted to determine the levels of interleukin (IL)-1β and IL-18.
We successfully established sepsis-induced acute lung injury in vivo by CLP surgery. GGPPS1 was upregulated in the lung tissues of CLP-induced septic mice. The activation of autophagy and NLRP3 inflammasome were found in the lung tissues of CLP-induced septic mice. The addition of exogenous GGPP (synthesis products catalyzed by GGPPS1) and autophagic inhibitor 3-MA aggravated sepsis-induced hypoxemia, alveolar inflammatory response, intrapulmonary hemorrhage, and pulmonary edema, as evidenced by increased lung injury score, lung wet/dry weight ratio, MPO activity, total protein content, total cell, and PMNs counts, and decreased PaO2/FiO2 ratio. While NLRP3 inhibitor MCC950 exerted the opposite effects. Additionally, administration of exogenous GGPP could inhibit the activation of autophagy, enhance the activity of NLRP3 inflammasome, and the production of IL-1β and IL-18. Inhibition of autophagy by 3-MA treatment also promoted the activity of NLRP3 inflammasome and the production of IL-1β and IL-18. While MCC950 restrained the activity of NLRP3 inflammasome, but did not affect the activation of autophagy. Notably, the expression of GGPPS1 was unaltered in CLP-induced mice following GGPP, 3-MA, or MCC950 treatment. Moreover, GGPPS1 was upregulated in MH-S cells stimulated with LPS, and GGPPS1 knockdown enhanced the activation of autophagy and inhibited the activity of NLRP3 inflammasome in vitro. Importantly, depletion of GGPPS1 could alleviate LPS-induced inflammatory response by inducing autophagy-dependent NLRP3 inflammasome inhibition.
GGPPS1 knockdown suppressed NLRP3 inflammasome activity via promoting autophagy and then attenuated sepsis-induced acute lung injury, revealing a novel target for treating sepsis-induced lung injury.
Li D
,Li C
,Wang T
,Zhang C
,Zhu Z
,Zhang G
,Fang B
... -
《-》