A multi-view graph contrastive learning framework for deciphering spatially resolved transcriptomics data.

来自 PUBMED

作者:

Zhang LLiang SWan L

展开

摘要:

Spatially resolved transcriptomics data are being used in a revolutionary way to decipher the spatial pattern of gene expression and the spatial architecture of cell types. Much work has been done to exploit the genomic spatial architectures of cells. Such work is based on the common assumption that gene expression profiles of spatially adjacent spots are more similar than those of more distant spots. However, related work might not consider the nonlocal spatial co-expression dependency, which can better characterize the tissue architectures. Therefore, we propose MuCoST, a Multi-view graph Contrastive learning framework for deciphering complex Spatially resolved Transcriptomic architectures with dual scale structural dependency. To achieve this, we employ spot dependency augmentation by fusing gene expression correlation and spatial location proximity, thereby enabling MuCoST to model both nonlocal spatial co-expression dependency and spatially adjacent dependency. We benchmark MuCoST on four datasets, and we compare it with other state-of-the-art spatial domain identification methods. We demonstrate that MuCoST achieves the highest accuracy on spatial domain identification from various datasets. In particular, MuCoST accurately deciphers subtle biological textures and elaborates the variation of spatially functional patterns.

收起

展开

DOI:

10.1093/bib/bbae255

被引量:

1

年份:

2024

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(227)

参考文献(23)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读