Identification of the molecular subtypes and signatures to predict the prognosis, biological functions, and therapeutic response based on the anoikis-related genes in colorectal cancer.

来自 PUBMED

作者:

Zhai XChen BHu HDeng YChen YHong YRen XJiang C

展开

摘要:

Tumors that resist anoikis, a programmed cell death triggered by detachment from the extracellular matrix, promote metastasis; however, the role of anoikis-related genes (ARGs) in colorectal cancer (CRC) stratification, prognosis, and biological functions remains unclear. We obtained transcriptomic profiles of CRC and 27 ARGs from The Cancer Genome Atlas, the Gene Expression Omnibus, and MSigDB databases, respectively. CRC tissue samples were classified into two clusters based on the expression pattern of ARGs, and their functional differences were explored. Hub genes were screened using weighted gene co-expression network analysis, univariate analysis, and least absolute selection and shrinkage operator analysis, and validated in cell lines, tissues, or the Human Protein Atlas database. We constructed an ARG-risk model and nomogram to predict prognosis in patients with CRC, which was validated using an external cohort. Multifaceted landscapes, including stemness, tumor microenvironment (TME), immune landscape, and drug sensitivity, between high- and low-risk groups were examined. Patients with CRC were divided into C1 and C2 clusters. Cluster C1 exhibited higher TME scores, whereas cluster C2 had favorable outcomes and a higher stemness index. Eight upregulated hub ARGs (TIMP1, P3H1, SPP1, HAMP, IFI30, ADAM8, ITGAX, and APOC1) were utilized to construct the risk model. The qRT-PCR, Western blotting, and immunohistochemistry results were consistent with those of the bioinformatics analysis. Patients with high risk exhibited worse overall survival (p < 0.01), increased stemness, TME, immune checkpoint expression, immune infiltration, tumor mutation burden, and drug susceptibility compared with the patients with low risk. Our results offer a novel CRC stratification based on ARGs and a risk-scoring system that could predict the prognosis, stemness, TME, immunophenotypes, and drug susceptibility of patients with CRC, thereby improving their prognosis. This stratification may facilitate personalized therapies.

收起

展开

DOI:

10.1002/cam4.7315

被引量:

1

年份:

2024

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(189)

参考文献(53)

引证文献(1)

来源期刊

Cancer Medicine

影响因子:4.706

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读