-
Effects of dietary fiber and biotic supplementation on apparent total tract macronutrient digestibility and the fecal characteristics, metabolites, and microbiota of healthy adult dogs.
Dietary fibers and biotics have been shown to support gastrointestinal health in dogs, but are usually tested individually. There is value in testing fiber-biotic combinations that are commonly used commercially. Therefore, this study was conducted to determine the apparent total tract macronutrient digestibility (ATTD) of diets supplemented with fibers or biotics and to evaluate their effects on the fecal characteristics, metabolites, microbiota, and immunoglobulin A (IgA) concentrations of dogs. Twelve healthy adult female beagle dogs (age = 6.2 ± 1.6 yr; body weight = 9.5 ± 1.1 kg) were used in a replicated 3 × 3 Latin square design to test three treatments: 1) control diet based on rice, chicken meal, tapioca starch, and cellulose + a placebo treat (CT); 2) diet based on rice, chicken meal, garbanzo beans, and cellulose + a placebo treat (GB); 3) diet based on rice, chicken meal, garbanzo beans, and a functional fiber/prebiotic blend + a probiotic-containing treat (GBPP). In each 28-d period, a 22-d diet adaptation was followed by a 5-d fecal collection phase. Fasted blood samples were collected on day 28. Data were analyzed using the Mixed Models procedure of SAS 9.4, with P < 0.05 being significant and P < 0.10 being trends. ATTD of dry matter (DM), organic matter, and energy were lower (P < 0.001) and DM fecal output was higher (P < 0.01) in dogs fed GBPP than CT or GB, whereas ATTD of crude protein was higher (P < 0.001) in dogs fed CT and GBPP than GB. ATTD of fat was higher (P < 0.001) and wet fecal output was lower (P < 0.01) in dogs fed CT than GB or GBPP. Fecal DM% was higher (P < 0.001) in dogs fed CT than GBPP or GB, and higher in dogs fed GBPP than GB. Fecal short-chain fatty acid concentrations were higher (P < 0.001) in dogs fed GB than CT or GBPP, and higher in dogs fed GB than GBPP. Fecal IgA concentrations were higher (P < 0.01) in dogs fed GB than CT. Fecal microbiota populations were affected by diet, with alpha diversity being higher (P < 0.01) in dogs fed GB than CT, and beta diversity shifting following dietary fiber and biotic supplementation. The relative abundance of 24 bacterial genera was altered in dogs fed GB or GBPP than CT. Serum triglyceride concentrations were lower in dogs fed GB than GBPP or CT. Our results demonstrate that legume-based dietary fibers, with or without prebiotics and probiotics, reduce ATTD, increase stool output, beneficially shift fecal metabolites and microbiota, and reduce blood lipids in adult dogs.
Wilson SM
,Kang Y
,Marshall K
,Swanson KS
... -
《-》
-
Dietary supplementation with fiber, "biotics," and spray-dried plasma affects apparent total tract macronutrient digestibility and the fecal characteristics, fecal microbiota, and immune function of adult dogs.
A variety of functional ingredients, including fibers, prebiotics, probiotics, and postbiotics may be added to pet foods to support gastrointestinal and immune health. While many of these ingredients have been tested individually, commercial foods often include blends that also require testing. This study was conducted to evaluate the effects of diets containing blends of fibers, "biotics," and/or spray-dried plasma on apparent total tract digestibility (ATTD), stool quality, fecal microbiota and metabolites, and immune health outcomes of adult dogs. A total of 12 healthy adult intact English pointer dogs (6 M, 6 F; age = 6.4 ± 2.0 yr; BW = 25.8 ± 2.6 kg) were used in a replicated 3 × 3 Latin square design to test diets formulated to: 1) contain a low concentration of fermentative substances (control diet, CT); 2) be enriched with a fiber-prebiotic-probiotic blend (FPPB); and 3) be enriched with a fiber-prebiotic-probiotic blend + immune-modulating ingredients (iFFPB). In each 28-d period, 22 d of diet adaptation was followed by a 5-d fecal collection phase and 1 d for blood sample collection. All data were analyzed using SAS 9.4, with significance being P < 0.05 and trends being P < 0.10. FPPB and iFPPB diets led to shifts in numerous outcome measures. Dry matter (DM), organic matter, fat, fiber, and energy ATTD were lower (P < 0.01), fecal scores were lower (P < 0.01; firmer stools), and fecal DM% was higher (P < 0.0001) in dogs fed FPPB or iFPPB than those fed CT. Serum triglycerides and cholesterol were lower (P < 0.01) in dogs fed FPPB or iFPPB than those fed CT. Fecal protein catabolites (isobutyrate, isovalerate, indole, and ammonia) and butyrate were lower (P < 0.05), while fecal immunoglobulin A (IgA) was higher (P < 0.01) in dogs fed FPPB and iFPPB than those fed CT. Fecal microbiota populations were affected by diet, with alpha-diversity being lower (P < 0.05) in dogs fed iFPPB and the relative abundance of 20 bacterial genera being altered in dogs fed FPPB or iFPPB compared with CT. The circulating helper T cell:cytotoxic T cell ratio was higher (P < 0.05) in dogs fed iFPPB than those fed CT. Circulating B cells were lower (P < 0.05) in dogs fed FPPB than those fed iFPPB, and lower (P < 0.05) in dogs fed iFPPB than those fed CT. Our results demonstrate that feeding a fiber-prebiotic-probiotic blend may provide many benefits to canine health, including improved stool quality, beneficial shifts to fecal microbiota and metabolite profiles, reduced blood lipids, and increased fecal IgA.
Lee AH
,Lin CY
,Do S
,Oba PM
,Belchik SE
,Steelman AJ
,Schauwecker A
,Swanson KS
... -
《-》
-
Dietary supplementation of a fiber-prebiotic and saccharin-eugenol blend in extruded diets fed to dogs.
Prebiotics and dietary fibers are nondigestible ingredients that may confer benefits to the host by selectively stimulating beneficial intestinal bacteria and microbial-derived metabolites that support gut and host health. This experiment evaluated the effects of a blend of prebiotics and dietary fibers on apparent total tract digestibility (ATTD) and fecal metabolites related to gastrointestinal health in adult dogs. Four diets containing either 5% cellulose (control; CT), 5% dietary fiber and prebiotic blend (FP), 0.02% saccharin and eugenol (SE), or 5% fiber blend plus 0.02% saccharin and eugenol (FSE) were formulated to meet or exceed the AAFCO (2017) nutritional requirements for adult dogs. Eight adult female beagles (mean age 4.2 ± 1.1 yr; mean BW = 10.8 ± 1.4 kg; mean BCS = 5.8 ± 0.6) were randomly assigned to 1 of the 4 dietary treatments using a replicated 4 × 4 Latin square design. Each experimental period consisted of 14 d (10 d of diet adaptation and 4 d of total and fresh fecal and total urine collection). All animals remained healthy throughout the study, with serum metabolites being within reference ranges for adult dogs. All diets were well accepted by the dogs, resulting in similar (P > 0.05) daily food intakes among treatments. Likewise, fecal output and scores did not differ (P > 0.05) among dietary treatments, with the latter being within the ideal range (2.5-2.9) in a 5-point scale. All diets were highly digestible and had similar (P > 0.05) ATTD of dry matter (81.6%-84.4%), organic matter (86.4%-87.3%), and crude protein (86.6%-87.3%). However, total dietary fiber (TDF) digestibility was greater for dogs fed the FSE diet (P < 0.05) in contrast with dogs fed the CT and SE diets, whereas dogs fed FP diets had intermediate TDF digestibility, but not different from all other treatments. Fecal acetate and propionate concentrations were greater (P < 0.05) for dogs fed FP and FSE diets. Fecal concentrations of isobutyrate and isovalerate were greater for dogs fed CT (P < 0.05) compared with dogs fed the other three treatments. No shifts in fecal microbial richness and diversity were observed among dietary treatments. Overall, the data suggest that dietary supplementation of fiber and prebiotic blend was well tolerated by dogs, did not cause detrimental effects on fecal quality or nutrient digestibility, and resulted in beneficial shifts in fecal metabolites that may support gut health.
Nogueira JPS
,He F
,Mangian HF
,Oba PM
,De Godoy MRC
... -
《-》
-
Apparent total tract macronutrient digestibility of mildly cooked human-grade vegan dog foods and their effects on the blood metabolites and fecal characteristics, microbiota, and metabolites of adult dogs.
Vegan, mildly cooked, and human-grade dog foods are becoming more popular, as beliefs and views of pet owners change. To our knowledge, however, dog studies have not examined the digestibility of commercial vegan diets. Therefore, the objective of this study was to determine the apparent total tract digestibility (ATTD) of mildly cooked human-grade vegan dog foods and their effects on blood metabolites and fecal microbiota, characteristics, and metabolites of adult dogs consuming them. Three commercial dog foods were tested. Two were mildly cooked human-grade vegan dog diets, while the third was a chicken-based extruded dog diet. Twelve healthy adult female beagles (7.81 ± 0.65 kg; 7.73 ± 1.65 yr) were used in a replicated 3 × 3 Latin Square design. The study consisted of three experimental periods, with each composed of a 7 d diet adaptation phase, 15 d of consuming 100% of the diet, a 5 d phase for fecal collection for ATTD measurement, and 1 d for blood collection for serum chemistry and hematology. During the fecal collection period, a fresh sample was collected for fecal scoring and dry matter, pH, metabolite, and microbiota measurements. All data were analyzed using the Mixed Models procedure of SAS (version 9.4). All three diets were shown to be highly digestible, with all macronutrients having digestibility values above 80%. The vegan diets had higher (P < 0.001) ATTD of fat, but lower (P < 0.05) ATTD of organic matter than the extruded diet. Dogs consuming the vegan diets had lower circulating cholesterol (P < 0.001), triglyceride (P < 0.001), and platelet (P < 0.009) concentrations and lower (P < 0.010) blood neutrophil percentages than dogs consuming the extruded diet. Dogs consuming vegan diets had lower (P < 0.001) fecal dry matter percentages, lower (P < 0.001) fecal phenol and indole concentrations, and higher (P = 0.05) fecal short-chain fatty acid concentrations than those consuming the extruded diet. Fecal bacterial alpha and beta diversities were not different (P > 0.05) among diets, but dogs consuming vegan diets had altered (P < 0.05) relative abundances of nearly 20 bacterial genera when compared with those consuming the extruded diet. In conclusion, the mildly cooked human-grade vegan dog foods tested in this study performed well, resulting in desirable fecal characteristics, ATTD, and serum chemistries. The vegan diets tested also led to positive changes to serum lipids and fecal metabolites, and interesting changes to the fecal microbial community.
Roberts LJ
,Oba PM
,Swanson KS
《-》
-
Effects of yeast-enriched functionalized canola meal supplementation on apparent total tract macronutrient digestibility and fecal characteristics, fecal microbiota, and immune function of healthy adult dogs.
Brewer's dried yeast has a high nutritional value and has long been utilized by the animal feed industry as a source of protein, B-complex vitamins, and minerals. Brewer's dried yeast is also rich in bioactive compounds and may thereby be used as a functional ingredient, providing benefits beyond that of its nutrient content. Canola meal is a high-fiber ingredient that also has unique properties, especially when it is wetted and dried using a proprietary drying system that creates a "functionalized" canola meal. The objective of this experiment was to evaluate the effects of a yeast-enriched functionalized canola meal (FCM) on apparent total tract digestibility (ATTD) and the fecal quality, metabolite concentrations, and microbiota populations, and immune function of healthy adult dogs. Twelve adult female beagles (body weight [BW] = 7.6 ± 0.7 kg; age = 5.8 ± 1.3) were used in a replicated 4 × 4 Latin square design with 28-d periods. Each experimental period consisted of a 22-d adaptation phase, 5 d of total and fresh fecal collection, and blood collection on the last day. To start, all dogs were fed a basal diet to maintain BW for 14 d. Following fecal and blood collections at baseline (-1 d) to confirm health status, experimental periods began testing the following dietary treatments using a Latin square design experiment: 1) FCM only (no yeast inclusion), 2) FCM + low yeast dose, 3) FCM + medium yeast dose, and 4) FCM + high yeast dose. All treatments were top-dressed onto the basal diet at a rate estimated to be 1% of daily intake (as-is basis). Statistical analysis was performed using the PROC MIXED procedure of SAS with the main effect of treatment and the random effect of dog. Significance was declared at P ≤ 0.05, and trends reported if 0.05 < P ≤ 0.10. Supplementation with yeast-enriched FCM had no significant effect on the ATTD of macronutrients or energy or the fecal characteristics, metabolite concentrations, and microbiota populations of dogs. Additionally, no significant differences were observed in circulating immune cell counts or response to Toll-like receptor agonists among treatments. Our results suggest that the yeast-enriched FCM could be included in canine diets without negatively affecting stool quality, fecal metabolite concentrations, or ATTD. Further research is necessary to determine the effective dose of yeast-enriched FCM, potential mechanisms of action, and other potential implications it has on canine health.
De La Guardia-Hidrogo VM
,Soto-Diaz K
,Rummell LM
,Valizadegan N
,Fields CJ
,Steelman AJ
,Swanson KS
... -
《-》