Exploring T-cell exhaustion features in Acute myocardial infarction for a Novel Diagnostic model and new therapeutic targets by bio-informatics and machine learning.

来自 PUBMED

作者:

Jin NRong JChen XHuang LMa H

展开

摘要:

T-cell exhaustion (TEX), a condition characterized by impaired T-cell function, has been implicated in numerous pathological conditions, but its role in acute myocardial Infarction (AMI) remains largely unexplored. This research aims to identify and characterize all TEX-related genes for AMI diagnosis. By integrating gene expression profiles, differential expression analysis, gene set enrichment analysis, protein-protein interaction networks, and machine learning algorithms, we were able to decipher the molecular mechanisms underlying TEX and its significant association with AMI. In addition, we investigated the diagnostic validity of the leading TEX-related genes and their interactions with immune cell profiles. Different types of candidate small molecule compounds were ultimately matched with TEX-featured genes in the "DrugBank" database to serve as potential therapeutic medications for future TEX-AMI basic research. We screened 1725 differentially expressed genes (DEGs) from 80 AMI samples and 71 control samples, identifying 39 differential TEX-related transcripts in total. Functional enrichment analysis identified potential biological functions and signaling pathways associated with the aforementioned genes. We constructed a TEX signature containing five hub genes with favorable prognostic performance using machine learning algorithms. In addition, the prognostic performance of the nomogram of these five hub genes was adequate (AUC between 0.815 and 0.995). Several dysregulated immune cells were also observed. Finally, six small molecule compounds which could be the future therapeutic for TEX in AMI were discovered. Five TEX diagnostic feature genes, CD48, CD247, FCER1G, TNFAIP3, and FCGRA, were screened in AMI. Combining these genes may aid in the early diagnosis and risk prediction of AMI, as well as the evaluation of immune cell infiltration and the discovery of new therapeutics.

收起

展开

DOI:

10.1186/s12872-024-03907-x

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(45)

引证文献(0)

来源期刊

BMC Cardiovascular Disorders

影响因子:2.172

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读