The advancement of artificial intelligence in biomedical research and health innovation: challenges and opportunities in emerging economies.

来自 PUBMED

作者:

da Silva RGL

展开

摘要:

The advancement of artificial intelligence (AI), algorithm optimization and high-throughput experiments has enabled scientists to accelerate the discovery of new chemicals and materials with unprecedented efficiency, resilience and precision. Over the recent years, the so-called autonomous experimentation (AE) systems are featured as key AI innovation to enhance and accelerate research and development (R&D). Also known as self-driving laboratories or materials acceleration platforms, AE systems are digital platforms capable of running a large number of experiments autonomously. Those systems are rapidly impacting biomedical research and clinical innovation, in areas such as drug discovery, nanomedicine, precision oncology, and others. As it is expected that AE will impact healthcare innovation from local to global levels, its implications for science and technology in emerging economies should be examined. By examining the increasing relevance of AE in contemporary R&D activities, this article aims to explore the advancement of artificial intelligence in biomedical research and health innovation, highlighting its implications, challenges and opportunities in emerging economies. AE presents an opportunity for stakeholders from emerging economies to co-produce the global knowledge landscape of AI in health. However, asymmetries in R&D capabilities should be acknowledged since emerging economies suffers from inadequacies and discontinuities in resources and funding. The establishment of decentralized AE infrastructures could support stakeholders to overcome local restrictions and opens venues for more culturally diverse, equitable, and trustworthy development of AI in health-related R&D through meaningful partnerships and engagement. Collaborations with innovators from emerging economies could facilitate anticipation of fiscal pressures in science and technology policies, obsolescence of knowledge infrastructures, ethical and regulatory policy lag, and other issues present in the Global South. Also, improving cultural and geographical representativeness of AE contributes to foster the diffusion and acceptance of AI in health-related R&D worldwide. Institutional preparedness is critical and could enable stakeholders to navigate opportunities of AI in biomedical research and health innovation in the coming years.

收起

展开

DOI:

10.1186/s12992-024-01049-5

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(241)

参考文献(77)

引证文献(1)

来源期刊

Globalization and Health

影响因子:10.391

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读