-
Restless legs symptoms increased during COVID-19 pandemic. International ICOSS-survey.
Restless legs syndrome (RLS) has been associated with anxiety, depression, insomnia, lifestyle factors and infections. We aimed to study the prevalence of symptoms of RLS during the COVID-19 pandemic versus pre-pandemic. We hypothesized that pre-existing RLS symptoms worsened and pandemic-related factors may have triggered new symptoms of RLS.
Adults (≥18 years) from fifteen countries across four continents participated in an online survey between May and August 2020. The harmonized questionnaire included a validated single question on RLS with response alternatives from 1 to 5 on a scale from never to every/almost every evening or night. Other measures were the Insomnia Severity Index (ISI), measures of symptoms of anxiety (GAD-2) and depression (PHQ-2), and questions on different pandemic-related factors.
Altogether, 17 846 subjects (63.8 % women) were included in the final analyses. The mean age was 41.4 years (SD 16.1). During the pandemic, symptoms of RLS (≥3 evenings/nights per week) were more common 9.1 % (95 % CI 8.7-10.1) compared to 5.4 % (95 % CI 4.9-6.0) before the pandemic (P < 0.0001). Alltogether 1.3 % (95 % CI 1.1-1.6) respondents had new-onset symptoms (≥3 evenings/nights per week). Moderate-severe insomnia was strongly associated with RLS symptoms. The occurrences of new-onset RLS symptoms were 5.6 % (95 % CI 0.9-13.0) for participants reporting COVID-19 and 1.1 % (95 % CI 0.7-1.5) for non-COVID-19 participants. In the fully adjusted logistic regression model, the occurrence of new-onset RLS symptoms was associated with younger age, social restrictions and insomnia severity. In a similar analysis, RLS symptoms (≥3 evenings/nights per week) were associated with lower education, financial hardship, sleep apnea symptoms, use of hypnotics, insomnia severity, symptoms of depression and possible post-traumatic stress disorder.
Our findings indicate that RLS symptoms were more common during the pandemic than before. Usually, the prevalence of RLS increases with age. However, during the pandemic, new-onset symptoms of RLS were more common in younger age groups. This may be due to the pandemic-related factors being more pronounced in the younger compared to the older. The association between insomnia, psychiatric symptoms and RLS warrants clinical attention.
Partinen E
,Inoue Y
,Sieminski M
,Merikanto I
,Bjorvatn B
,Bolstad CJ
,Chung F
,De Gennaro L
,Espie CA
,Holzinger B
,Matsui K
,Mota-Rolim S
,Morin C
,Nadorff MR
,Penzel T
,Plazzi G
,Wing YK
,Dauvilliers Y
,Partinen M
... -
《-》
-
Antibody tests for identification of current and past infection with SARS-CoV-2.
The diagnostic challenges associated with the COVID-19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS-CoV-2 infection. Serology tests to detect the presence of antibodies to SARS-CoV-2 enable detection of past infection and may detect cases of SARS-CoV-2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS-CoV-2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS-CoV-2 epidemiology.
To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS-CoV-2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS-CoV-2. Sources of heterogeneity investigated included: timing of test, test method, SARS-CoV-2 antigen used, test brand, and reference standard for non-SARS-CoV-2 cases.
The COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) 'COVID-19: Living map of the evidence' and the Norwegian Institute of Public Health 'NIPH systematic and living map on COVID-19 evidence'. We did not apply language restrictions.
We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT-PCR test. Small studies with fewer than 25 SARS-CoV-2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR), clinical diagnostic criteria, and pre-pandemic samples).
We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS-2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta-analysis, we fitted univariate random-effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria.
We included 178 separate studies (described in 177 study reports, with 45 as pre-prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS-CoV-2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS-CoV-2 infection were most commonly hospital inpatients (78/178, 44%), and pre-pandemic samples were used by 45% (81/178) to estimate specificity. Over two-thirds of studies recruited participants based on known SARS-CoV-2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS-CoV-2 vaccines and present data for naturally acquired antibody responses. Seventy-nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme-linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS-CoV-2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre-pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent-phase infection) and specific (pre-pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike-protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent-phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low-prevalence (2%) setting, where antibody testing is used to diagnose COVID-19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS-CoV-2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post-symptom onset or post-positive PCR) of SARS-CoV-2 infection.
Some antibody tests could be a useful diagnostic tool for those in whom molecular- or antigen-based tests have failed to detect the SARS-CoV-2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post-acute sequelae of COVID-19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero-epidemiological purposes. The applicability of results for detection of vaccination-induced antibodies is uncertain.
Fox T
,Geppert J
,Dinnes J
,Scandrett K
,Bigio J
,Sulis G
,Hettiarachchi D
,Mathangasinghe Y
,Weeratunga P
,Wickramasinghe D
,Bergman H
,Buckley BS
,Probyn K
,Sguassero Y
,Davenport C
,Cunningham J
,Dittrich S
,Emperador D
,Hooft L
,Leeflang MM
,McInnes MD
,Spijker R
,Struyf T
,Van den Bruel A
,Verbakel JY
,Takwoingi Y
,Taylor-Phillips S
,Deeks JJ
,Cochrane COVID-19 Diagnostic Test Accuracy Group
... -
《Cochrane Database of Systematic Reviews》
-
RETRACTED: Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial.
Chloroquine and hydroxychloroquine have been found to be efficient on SARS-CoV-2, and reported to be efficient in Chinese COV-19 patients. We evaluate the effect of hydroxychloroquine on respiratory viral loads.
French Confirmed COVID-19 patients were included in a single arm protocol from early March to March 16th, to receive 600mg of hydroxychloroquine daily and their viral load in nasopharyngeal swabs was tested daily in a hospital setting. Depending on their clinical presentation, azithromycin was added to the treatment. Untreated patients from another center and cases refusing the protocol were included as negative controls. Presence and absence of virus at Day6-post inclusion was considered the end point.
Six patients were asymptomatic, 22 had upper respiratory tract infection symptoms and eight had lower respiratory tract infection symptoms. Twenty cases were treated in this study and showed a significant reduction of the viral carriage at D6-post inclusion compared to controls, and much lower average carrying duration than reported in the litterature for untreated patients. Azithromycin added to hydroxychloroquine was significantly more efficient for virus elimination.
Despite its small sample size, our survey shows that hydroxychloroquine treatment is significantly associated with viral load reduction/disappearance in COVID-19 patients and its effect is reinforced by azithromycin.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). Concerns have been raised regarding this article, the substance of which relate to the articles' adherence to Elsevier's publishing ethics policies and the appropriate conduct of research involving human participants, as well as concerns raised by three of the authors themselves regarding the article's methodology and conclusions. Elsevier's Research Integrity and Publishing Ethics Team, in collaboration with the journal's co-owner, the International Society of Antimicrobial Chemotherapy (ISAC), and with guidance from an impartial field expert acting in the role of an independent Publishing Ethics Advisor, Dr. Jim Gray, Consultant Microbiologist at the Birmingham Children's and Women's Hospitals, U.K., conducted an investigation and determined that the below points constituted cause for retraction: • The journal has been unable to confirm whether any of the patients for this study were accrued before ethical approval had been obtained. The ethical approval dates for this article are stated as being 5th and 6th of March 2020 (ANSM and CPP respectively), while the article states that recruitment began in “early March”. The 17th author, Prof. Philippe Brouqui, has confirmed that the start date for patient accrual was 6th March 2020. The journal has not been able to establish whether all patients could have entered into the study in time for the data to have been analysed and included in the manuscript prior to its submission on the 20th March 2020, nor whether all patients were enrolled in the study upon admission as opposed to having been hospitalised for some time before starting the treatment described in the article. Additionally, the journal has not been able to establish whether there was equipoise between the study patients and the control patients. • The journal has not been able to establish whether the subjects in this study should have provided informed consent to receive azithromycin as part of the study. The journal has concluded that that there is reasonable cause to conclude that azithromycin was not considered standard care at the time of the study. The 17th author, Prof. Philippe Brouqui has attested that azithromycin treatment was not, at the time of the study, an experimental treatment but a possible treatment for, or preventative measure against, bacterial superinfections of viral pneumonia as described in section 2.4 of the article, and as such the treatment should be categorised as standard care that would not require informed consent. This does not fully address the journal's concerns around the use of azithromycin in the study. In section 3.1 of the article, it is stated that six patients received azithromycin to prevent (rather than treat) bacterial superinfection. All of these were amongst the patients who also received hydroxychloroquine (HCQ). None of the control patients are reported to have received azithromycin. This would indicate that only patients in the HCQ arm received azithromycin, all of whom were in one center. The recommendations for use of macrolides in France at the time the study was conducted indicate that azithromycin would not have been a logical agent to use as first-line prophylaxis against pneumonia due to the frequency of macrolide resistance amongst bacteria such as pneumococci. These two points suggest that azithromycin would not have been standard practice across southern France at the time the study was conducted and would have required informed consent. • Three of the authors of this article, Dr. Johan Courjon, Prof. Valérie Giordanengo, and Dr. Stéphane Honoré have contacted the journal to assert their opinion that they have concerns regarding the presentation and interpretation of results in this article and have stated they no longer wish to see their names associated with the article. • Author Prof. Valérie Giordanengo informed the journal that while the PCR tests administered in Nice were interpreted according to the recommendations of the national reference center, it is believed that those carried out in Marseille were not conducted using the same technique or not interpreted according to the same recommendations, which in her opinion would have resulted in a bias in the analysis of the data. This raises concerns as to whether the study was partially conducted counter to national guidelines at that time. The 17th author, Prof. Philippe Brouqui has attested that the PCR methodology was explained in reference 17 of the article. However, the article referred to by reference 17 describes several diagnostic approaches that were used (one PCR targeting the envelope protein only; another targeting the spike protein; and three commercially produced systems by QuantiNova, Biofire, and FTD). This reference does not clarify how the results were interpreted. It has also been noted during investigation of these concerns that only 76% (19/25) of patients were viral culture positive, resulting in uncertainty in the interpretation of PCR reports as has been raised by Prof. Giordanengo. As part of the investigation, the corresponding author was contacted and asked to provide an explanation for the above concerns. No response has been received within the deadline provided by the journal. Responses were received by the 3rd and 17th authors, Prof. Philippe Parola and Prof. Philippe Brouqui, respectively, and were reviewed as part of the investigation. These two authors, in addition to 1st author Dr. Philippe Gautret, 13th author Prof. Philippe Colson, and 15th author Prof. Bernard La Scola, disagreed with the retraction and dispute the grounds for it. Having followed due process and concluded the aforementioned investigation and based on the recommendation of Dr. Jim Gray acting in his capacity as independent Publishing Ethics Advisor, the co-owners of the journal (Elsevier and ISAC) have therefore taken the decision to retract the article.
Gautret P
,Lagier JC
,Parola P
,Hoang VT
,Meddeb L
,Mailhe M
,Doudier B
,Courjon J
,Giordanengo V
,Vieira VE
,Tissot Dupont H
,Honoré S
,Colson P
,Chabrière E
,La Scola B
,Rolain JM
,Brouqui P
,Raoult D
... -
《-》
-
Treatment of restless legs syndrome and periodic limb movement disorder: an American Academy of Sleep Medicine clinical practice guideline.
This guideline establishes clinical practice recommendations for treatment of restless legs syndrome (RLS) and periodic limb movement disorder (PLMD) in adults and pediatric patients.
The American Academy of Sleep Medicine (AASM) commissioned a task force of experts in sleep medicine to develop recommendations and assign strengths based on a systematic review of the literature and an assessment of the evidence using the grading of recommendations assessment, development, and evaluation methodology. The task force provided a summary of the relevant literature and the certainty of evidence, the balance of benefits and harms, patient values and preferences, and resource use considerations that support the recommendations. The AASM Board of Directors approved the final recommendations.
The following good practice statement is based on expert consensus, and its implementation is necessary for the appropriate and effective management of patients with RLS.
1. In all patients with clinically significant RLS, clinicians should regularly test serum iron studies including ferritin and transferrin saturation (calculated from iron and total iron binding capacity). Testing should ideally be administered in the morning avoiding all iron-containing supplements and foods at least 24 hours prior to blood draw. Analysis of iron studies greatly influences the decision to use oral or intravenous (IV) iron treatment. Consensus guidelines, which have not been empirically tested, suggest that supplementation of iron in adults with RLS should be instituted with oral or IV iron if serum ferritin ≤ 75 ng/mL or transferrin saturation < 20%, and only with IV iron if serum ferritin is between 75 and 100 ng/mL. In children, supplementation of iron should be instituted for serum ferritin < 50 ng/mL with oral or IV formulations. These iron supplementation guidelines are different than for the general population.
2. The first step in the management of RLS should be addressing exacerbating factors, such as alcohol, caffeine, antihistaminergic, serotonergic, antidopaminergic medications, and untreated obstructive sleep apnea.
3. RLS is common in pregnancy; prescribers should consider the pregnancy-specific safety profile of each treatment being considered.
The following recommendations are intended as a guide for clinicians in choosing a specific treatment for RLS and PLMD in adults and children. Each recommendation statement is assigned a strength ("strong" or "conditional"). A "strong" recommendation (ie, "We recommend…") is one that clinicians should follow under most circumstances. The recommendations listed below are ranked in the order of strength of recommendations and grouped by class of treatments within each PICO (Patient, Intervention, Comparator, Outcome) question. Some recommendations include remarks that provide additional context to guide clinicians with implementation of this recommendation.
1. In adults with RLS, the AASM recommends the use of gabapentin enacarbil over no gabapentin enacarbil (strong recommendation, moderate certainty of evidence).
2. In adults with RLS, the AASM recommends the use of gabapentin over no gabapentin (strong recommendation, moderate certainty of evidence).
3. In adults with RLS, the AASM recommends the use of pregabalin over no pregabalin (strong recommendation, moderate certainty of evidence).
4. In adults with RLS, the AASM recommends the use of IV ferric carboxymaltose over no IV ferric carboxymaltose in patients with appropriate iron status (see good practice statement for iron parameters) (strong recommendation, moderate certainty of evidence).
5. In adults with RLS, the AASM suggests the use of IV low molecular weight iron dextran over no IV low molecular weight iron dextran in patients with appropriate iron status (see good practice statement for iron parameters) (conditional recommendation, very low certainty of evidence).
6. In adults with RLS, the AASM suggests the use of IV ferumoxytol over no IV ferumoxytol in patients with appropriate iron status (see good practice statement for iron parameters) (conditional recommendation, very low certainty of evidence).
7. In adults with RLS, the AASM suggests the use of ferrous sulfate over no ferrous sulfate in patients with appropriate iron status (see good practice statement for iron parameters) (conditional recommendation, moderate certainty of evidence).
8. In adults with RLS, the AASM suggests the use of dipyridamole over no dipyridamole (conditional recommendation, low certainty of evidence).
9. In adults with RLS, the AASM suggests the use of extended-release oxycodone and other opioids over no opioids (conditional recommendation, moderate certainty of evidence).
10. In adults with RLS, the AASM suggests the use of bilateral high-frequency peroneal nerve stimulation over no peroneal nerve stimulation (conditional recommendation, moderate certainty of evidence).
11. In adults with RLS, the AASM suggests against the standard use of levodopa (conditional recommendation, very low certainty of evidence).
Remarks: levodopa may be used to treat RLS in patients who place a higher value on the reduction of restless legs symptoms with short-term use and a lower value on adverse effects with long-term use (particularly augmentation).
12. In adults with RLS, the AASM suggests against the standard use of pramipexole (conditional recommendation, moderate certainty of evidence).
Remarks: pramipexole may be used to treat RLS in patients who place a higher value on the reduction of restless legs symptoms with short-term use and a lower value on adverse effects with long-term use (particularly augmentation).
13. In adults with RLS, the AASM suggests against the standard use of transdermal rotigotine (conditional recommendation, low certainty of evidence).
Remarks: transdermal rotigotine may be used to treat RLS in patients who place a higher value on the reduction of restless legs symptoms with short-term use and a lower value on adverse effects with long-term use (particularly augmentation).
14. In adults with RLS, the AASM suggests against the standard use of ropinirole (conditional recommendation, moderate certainty of evidence).
Remarks: ropinirole may be used to treat RLS in patients who place a higher value on the reduction of restless legs symptoms with short-term use and a lower value on adverse effects with long-term use (particularly augmentation).
15. In adults with RLS, the AASM suggests against the use of bupropion for the treatment of RLS (conditional recommendation, moderate certainty of evidence).
16. In adults with RLS, the AASM suggests against the use of carbamazepine (conditional recommendation, low certainty of evidence).
17. In adults with RLS, the AASM suggests against the use of clonazepam (conditional recommendation, very low certainty of evidence).
18. In adults with RLS, the AASM suggests against the use of valerian (conditional recommendation, very low certainty of evidence).
19. In adults with RLS, the AASM suggests against the use of valproic acid (conditional recommendation, low certainty of evidence).
20. In adults with RLS, the AASM recommends against the use of cabergoline (strong recommendation, moderate certainty of evidence).
21. In adults with RLS and end-stage renal disease (ESRD), the AASM suggests the use of gabapentin over no gabapentin (conditional recommendation, very low certainty of evidence).
22. In adults with RLS and ESRD, the AASM suggests the use of IV iron sucrose over no IV iron sucrose in patients with ferritin < 200 ng/mL and transferrin saturation < 20% (conditional recommendation, moderate certainty of evidence).
23. In adults with RLS and ESRD, the AASM suggests the use of vitamin C over no vitamin C (conditional recommendation, low certainty of evidence).
24. In adults with RLS and ESRD, the AASM suggests against the standard use of levodopa (conditional recommendation, low certainty of evidence).
Remarks: levodopa may be used to treat RLS in patients who place a higher value on the reduction of restless legs symptoms with short-term use and a lower value on adverse effects with long-term use (particularly augmentation).
25. In adults with RLS and ESRD, the AASM suggests against the standard use of rotigotine (conditional recommendation, very low certainty of evidence).
Remarks: rotigotine may be used to treat RLS in patients who place a higher value on the reduction of restless legs symptoms with short-term use and a lower value on adverse effects with long-term use (particularly augmentation).
26. In adults with PLMD, the AASM suggests against the use of triazolam (conditional recommendation, very low certainty of evidence).
27. In adults with PLMD, the AASM suggests against the use of valproic acid (conditional recommendation, very low certainty of evidence).
28. In children with RLS, the AASM suggests the use of ferrous sulfate over no ferrous sulfate in patients with appropriate iron status (see good practice statement for iron parameters) (conditional recommendation, very low certainty of evidence).
Winkelman JW, Berkowski JA, DelRosso LM, et al. Treatment of restless legs syndrome and periodic limb movement disorder: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2025;21(1):137-152.
Winkelman JW
,Berkowski JA
,DelRosso LM
,Koo BB
,Scharf MT
,Sharon D
,Zak RS
,Kazmi U
,Falck-Ytter Y
,Shelgikar AV
,Trotti LM
,Walters AS
... -
《-》
-
Group B streptococcus colonization in pregnancy and neonatal outcomes: a three-year monocentric retrospective study during and after the COVID-19 pandemic.
Serra G
,Scalzo LL
,Giordano M
,Giuffrè M
,Trupiano P
,Venezia R
,Corsello G
... -
《-》