Astaxanthin attenuates osteoarthritis progression via inhibiting ferroptosis and regulating mitochondrial function in chondrocytes.
Ferroptosis is a novel form of regulated cell death that has a close association with mitochondrial dysfunction and is characterized by iron overload, the accumulation of reactive oxygen species (ROS), and lipid ROS. Chondrocytes ferroptosis accelerates the progression of osteoarthritis (OA). Astaxanthin (ATX) is a xanthophyll carotenoid that possesses anti-inflammatory and antioxidant properties and has been explored in research studies for the treatment of diabetes and cardiovascular disease. However, the role it plays in OA, particularly in chondrocyte ferroptosis, has not yet been reported. In this study, ferroptosis-related events were analyzed in rat chondrocytes in vitro. A surgical destabilized medial meniscus was performed for the establishment of in vivo OA model. The results showed that interleukin-1β (IL-1β) induced inflammatory injury in chondrocytes through the promotion of the expressions of inflammatory factors including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2). IL-1β triggered chondrocyte ferroptosis by increasing the levels of intracellular ROS, lipid ROS, iron, and mitochondrial iron and inhibiting the expressions of SLC7A11/glutathione peroxidase 4 (GPX4) and Ferritin. The above indices were ameliorated by ferrostatin-1 (Fer-1, a classic ferroptosis inhibitor) and ATX. Furthermore, Fer-1 and ATX rescued the IL-1β-induced down-regulating collagen type II (collagen Ⅱ) and up-regulating matrix metalloproteinase 13 (MMP13). Following treatment with IL-1β, mitochondrial membrane potential decreased and the mitochondrial membrane was broken. At the same time, the mitochondrion shrank, becoming deformed as the mitochondrial cristae reduced and became disrupted. These changes were entirely consistent with ferroptosis features. All the aforementioned phenomena were reversed by Fer-1 and ATX. In addition, intra-articular injection of Fer-1 and ATX delayed articular cartilage degradation and OA progression. This study demonstrated that IL-1β can induce inflammatory damage and ferroptosis in chondrocytes. Both Fer-1 and ATX have the ability to mitigate chondrocyte injury and osteoarthritis progression by inhibiting ferroptosis and the regulation of mitochondrial function. Targeting ferroptosis has the potential to be a promising future treatment method for OA.
Wang X
,Liu Z
,Peng P
,Gong Z
,Huang J
,Peng H
... -
《-》
Icariin inhibits chondrocyte ferroptosis and alleviates osteoarthritis by enhancing the SLC7A11/GPX4 signaling.
Chondrocyte ferroptosis plays a critical role in the pathogenesis of osteoarthritis (OA), regulated by the SLC7A11/GPX4 signaling pathway. Icariin (ICA), a flavonoid glycoside, exhibits strong anti-inflammatory and antioxidant activities. This study investigated whether ICA could modulate the SLC7A11/GPX4 signaling to inhibit chondrocyte ferroptosis and alleviate OA.
The objective was to explore the impact of ICA on chondrocyte ferroptosis in OA and its modulation of the SLC7A11/GPX4 signaling pathway.
The anti-ferroptosis effects of ICA were evaluated in an interleukin-1β (IL-1β)-treated SW1353 cell model, using Ferrostatin-1 (Fer-1) and Erastin (Era) as ferroptosis inhibitor and inducer, respectively, along with GPX4 knockdown via lentivirus-based shRNA. Additionally, the therapeutic efficacy of ICA on OA-related articular cartilage damage was assessed in rats through histopathology and immunohistochemistry (IHC).
IL-1β treatment upregulated the expression of OA-associated matrix metalloproteinases (MMP3 and MMP1), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-5), and increased intracellular ROS, lipid ROS, and MDA levels while downregulating collagen II and SOX9 expression in SW1353 cells. ICA treatment countered the IL-1β-induced upregulation of MMPs and ADAMTS-5, restored collagen II and SOX9 expression, and reduced intracellular ROS, lipid ROS, and MDA levels. Furthermore, IL-1β upregulated P53 but downregulated SLC7A11 and GPX4 expression in SW1353 cells, effects that were mitigated by ICA or Fer-1 treatment. Significantly, ICA also alleviated Era-induced ferroptosis, whereas it had no effect on GPX4-silenced SW1353 cells. In vivo, ICA treatment reduced articular cartilage damage in OA rats by partially restoring collagen II and GPX4 expression, inhibiting cartilage extracellular matrix (ECM) degradation and chondrocyte ferroptosis.
ICA treatment mitigated chondrocyte ferroptosis and articular cartilage damage by enhancing the SLC7A11/GPX4 signaling, suggesting its potential as a therapeutic agent for OA interventions.
Xiao J
,Luo C
,Li A
,Cai F
,Wang Y
,Pan X
,Xu L
,Wang Z
,Xing Z
,Yu L
,Chen Y
,Tian M
... -
《-》
Liproxstatin-1 alleviates cartilage degradation by inhibiting chondrocyte ferroptosis in the temporomandibular joint.
Ferroptosis contributes to temporomandibular joint osteoarthritis (TMJOA) lesion development and is still poorly understood.
In this study, we used different TMJOA animal models to examine whether ferroptosis was related to disease onset in TMJOA induced by monosodium iodoacetate (MIA), IL-1β, occlusion disorder (OD), and unilateral anterior crossbite (UAC). Immunohistochemical staining and Western blot analysis were used to detect ferroptosis- and cartilage degradation-related protein expression. Our results revealed reduced levels of the ferroptosis-related protein GPX4 in the cartilage layer, but the levels of ACSL4 and P53 were increased in the condyle. Injection of the ferroptosis inhibitor liproxstatin-1 (Lip-1) effectively decreased ACSL4, P53 and TRF expression. In vitro, IL-1β reduced cartilage extracellular matrix expression in mandibular condylar chondrocytes (MCCs). Lip-1 maintained the morphology and function of mitochondria and ameliorated the exacerbation of lipid peroxidation and reactive oxygen species (ROS) production induced by IL-1β.
These results suggest that chondrocyte ferroptosis plays an important role in the development and progression of TMJOA.
Inhibiting condylar chondrocyte ferroptosis could be a promising therapeutic strategy for TMJOA.
Cheng B
,Zhang J
,Shen Q
,Sun Z
,Luo Y
,Hu Y
... -
《-》
The RNA-binding protein SND1 promotes the degradation of GPX4 by destabilizing the HSPA5 mRNA and suppressing HSPA5 expression, promoting ferroptosis in osteoarthritis chondrocytes.
Heat shock protein family A member 5 (HSPA5), a recently identified suppressor of ferroptosis, was reported to potentially regulating osteoarthritis. However, the exact role of HSPA5 and how its expression was regulated in osteoarthritis are largely unclear.
Rat primary chondrocytes were treated with 10 ng/mL IL-1β for 24 h and incubated with ferrostatin-1 (a ferroptosis inhibitor). Cell viability, production of TNF-α, ROS and MDA, expression levels of collagen II, MMP13, GPX4, and SND1, and Fe2+ concentration were detected. Gain- and loss-of-function manipulations were performed to investigate the effect of HSPA5 on chondrocyte functions, and SND1 shRNA (sh-SND1) was transfected into IL-1β-treated primary chondrocytes alone or together with sh-HSPA5. Furthermore, the interaction between HSPA5 and GPX4 and the regulation of HSPA5 on GPX4 were explored. Finally, SND1 was knocked down in the rats with osteoarthritis, and the histopathology, expression of HSPA5-GPX4 axis, and levels of oxidative stress markers were evaluated.
IL-1β treatment could enhance extracellular matrix (ECM) degradation (collagen II reduced and MMP13 increased), promote ferroptosis, manifested by decreased cell viability, increased levels of TNF-α, ROS, MDA, and Fe2+ concentrations, and decreased level of GPX4 protein, and increase SND1 expression in chondrocytes, which could be reversed by ferrostatin-1. Knockdown of SND1 enhanced ECM degradation and suppressed ferroptosis IL-1β-treated chondrocytes, which could be eliminated by knockdown of HSPA5. SND1 bound with HSPA5 at the 3'UTR and destabilized the HSPA5 mRNA. HSPA5 protein directly bound with GPX4 protein and positively regulate its expression. HSPA5 overexpression suppressed IL-1β-induced chondrocyte ferroptosis, while this effect was counteracted by GPX4 silencing. Knockdown of SND1 upregulated HSPA5 and GPX4 in rat cartilage, inhibited inflammatory damage and ferroptosis, and alleviated OA progression.
The RNA-binding protein SND1 promotes the degradation of GPX4 by destabilizing the HSPA5 mRNA and suppressing HSPA5 expression, promoting ferroptosis in osteoarthritis chondrocytes.
Lv M
,Cai Y
,Hou W
,Peng K
,Xu K
,Lu C
,Yu W
,Zhang W
,Liu L
... -
《-》