-
Safety and immunogenicity of COReNAPCIN, a SARS-CoV-2 mRNA vaccine, as a fourth heterologous booster in healthy Iranian adults: A double-blind, randomized, placebo-controlled, phase 1 clinical trial with a six-month follow-up.
The recurrent COVID-19 infection, despite global vaccination, highlights the need for booster doses. A heterologous booster has been suggested to enhance immunity and protection against emerging variants of concern of the SARS-CoV-2 virus. In this report, we aimed to assess the safety, and immunogenicity of COReNAPCIN, as a fourth booster dose after three doses of inactivated vaccines.
The study was conducted as a double-blind, randomized, placebo-controlled phase 1 clinical trial of the mRNA-based vaccine candidate, COReNAPCIN. The vaccine was injected as a heterologous booster in healthy Iranian adults aged 18-50 who had previously received three doses of inactivated SARS-CoV-2 vaccines. In the study, 30 participants were randomly assigned to receive either COReNAPCIN in two different doses (25 µg and 50 µg) or placebo. The vaccine candidate contained mRNA encoding the complete sequence of the pre-fusion stabilized Spike protein of SARS-CoV-2, formulated within lipid nanoparticles. The primary endpoint was safety and the secondary objective was humoral immunogenicity until 6 months post-vaccination. The cellular immunogenicity was pursued as an exploratory outcome.
COReNAPCIN was well tolerated in vaccinated individuals in both doses with no life-threatening or other serious adverse events. The most noticeable solicited adverse events were pain at the site of injection, fatigue and myalgia. Regarding the immunogenicity, despite the seroprevalence of SARS-CoV-2 antibodies due to the vaccination history for all and previous SARS-CoV-2 infection for some participants, the recipients of 25 and 50 µg COReNAPCIN, two weeks post-vaccination, showed 6·6 and 8·1 fold increase in the level of anti-RBD, and 11·5 and 21·7 fold increase in the level of anti-spike antibody, respectively. The geometric mean virus neutralizing titers reached 10.2 fold in the 25 µg group and 8.4 fold in 50 µg group of pre-boost levels. After 6 months, the measured anti-spike antibody concentration still maintains a geometric mean fold rise of 2.8 and 6.3, comparing the baseline levels in 25 and 50 µg groups, respectively. Additionally, the significant increase in the spike-specific IFN-ϒ T-cell response upon vaccination underscores the activation of cellular immunity.
COReNAPCIN booster showed favorable safety, tolerability, and immunogenicity profile, supporting its further clinical development (Trial registration: IRCT20230131057293N1).
Salehi M
,Alavi Darazam I
,Nematollahi A
,Alimohammadi M
,Pouya S
,Alimohammadi R
,Khajavirad N
,Porgoo M
,Sedghi M
,Mahdi Sepahi M
,Azimi M
,Hosseini H
,Mahmoud Hashemi S
,Dehghanizadeh S
,Khoddami V
... -
《-》
-
Safety and immunogenicity of a modified mRNA-lipid nanoparticle vaccine candidate against COVID-19: Results from a phase 1, dose-escalation study.
Essink BJ
,Shapiro C
,Isidro MGD
,Bradley P
,Pragalos A
,Bloch M
,Santiaguel J
,Frias MV
,Miyakis S
,Alves de Mesquita M
,Berrè S
,Servais C
,Waugh N
,Hoffmann C
,Baba E
,Schönborn-Kellenberger O
,Wolz OO
,Koch SD
,Ganyani T
,Boutet P
,Mann P
,Mueller SO
,Ramanathan R
,Gaudinski MR
,Vanhoutte N
... -
《-》
-
Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: preliminary report of an open-label and randomised phase 1 clinical trial.
SARS-CoV-2 has caused millions of deaths, and, since Aug 11, 2020, 20 intramuscular COVID-19 vaccines have been approved for use. We aimed to evaluate the safety and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults without COVID-19 from China.
This was a randomised, single-centre, open-label, phase 1 trial done in Zhongnan Hospital (Wuhan, China), to evaluate the safety and immunogenicity of the Ad5-nCoV vaccine by aerosol inhalation in adults (≥18 years) seronegative for SARS-CoV-2. Breastfeeding or pregnant women and people with major chronic illnesses or history of allergies were excluded. Participants were enrolled and randomly assigned (1:1:1:1:1) into five groups to be vaccinated via intramuscular injection, aerosol inhalation, or both. Randomisation was stratified by sex and age (18-55 years or ≥56 years) using computer-generated randomisation sequences (block sizes of five). Only laboratory staff were masked to group assignment. The participants in the two aerosol groups received an initial high dose (2 × 1010 viral particles; HDmu group) or low dose (1 × 1010 viral particles; LDmu group) of Ad5-nCoV vaccine on day 0, followed by a booster on day 28. The mixed vaccination group received an initial intramuscular (5 × 1010 viral particles) vaccine on day 0, followed by an aerosolised booster (2 × 1010 viral particles) vaccine on day 28 (MIX group). The intramuscular groups received one dose (5 × 1010 viral particles; 1Dim group) or two doses (10 × 1010 viral particles; 2Dim group) of Ad5-nCoV on day 0. The primary safety outcome was adverse events 7 days after each vaccination, and the primary immunogenicity outcome was anti-SARS-CoV-2 spike receptor IgG antibody and SARS-CoV-2 neutralising antibody geometric mean titres at day 28 after last vaccination. This trial is registered with ClinicalTrials.gov, number NCT04552366.
Between Sept 28, 2020, and Sept 30, 2020, 230 individuals were screened for inclusion, of whom 130 (56%) participants were enrolled into the trial and randomly assigned into one of the five groups (26 participants per group). Within 7 days after vaccination, adverse events occurred in 18 (69%) in the HDmu group, 19 (73%) in the LDmu group, 19 (73%) in the MIX group, 19 (73%) in the 1Dim group, and 15 (58%) in the 2Dim group. The most common adverse events reported 7 days after the first or booster vaccine were fever (62 [48%] of 130 participants), fatigue (40 [31%] participants), and headache (46 [35%] participants). More adverse events were reported in participants who received intramuscular vaccination, including participants in the MIX group (49 [63%] of 78 participants), than those who received aerosol vaccine (13 [25%] of 52 participants) after the first vaccine vaccination. No serious adverse events were noted within 56 days after the first vaccine. At days 28 after last vaccination, geometric mean titres of SARS-CoV-2 neutralising antibody was 107 (95% CI 47-245) in the HDmu group, 105 (47-232) in the LDmu group, 396 (207-758) in the MIX group, 95 (61-147) in the 1Dim group, and 180 (113-288) in the 2Dim group. The geometric mean concentrations of receptor binding domain-binding IgG was 261 EU/mL (95% CI 121-563) in the HDmu group, 289 EU/mL (138-606) in the LDmu group, 2013 EU/mL (1180-3435) in the MIX group, 915 EU/mL (588-1423) in the 1Dim group, and 1190 EU/mL (776-1824) in the 2Dim group.
Aerosolised Ad5-nCoV is well tolerated, and two doses of aerosolised Ad5-nCoV elicited neutralising antibody responses, similar to one dose of intramuscular injection. An aerosolised booster vaccination at 28 days after first intramuscular injection induced strong IgG and neutralising antibody responses. The efficacy and cost-effectiveness of aerosol vaccination should be evaluated in future studies.
National Key Research and Development Programme of China and National Science and Technology Major Project.
For the Chinese translation of the Summary see Supplementary Material.
Wu S
,Huang J
,Zhang Z
,Wu J
,Zhang J
,Hu H
,Zhu T
,Zhang J
,Luo L
,Fan P
,Wang B
,Chen C
,Chen Y
,Song X
,Wang Y
,Si W
,Sun T
,Wang X
,Hou L
,Chen W
... -
《-》
-
Immunogenicity of mRNA vs. BBV152 vaccine boosters against Omicron subvariants: Final results from Phase B of the PRIBIVAC study, a randomized clinical trial.
BBV152 (Covaxin™) is a whole-virion inactivated SARS-CoV-2 vaccine mixed with an immune adjuvant. We aimed to compare immune responses after booster vaccination with heterologous BBV152 versus homologous mRNA vaccine.
We conducted a randomized, participant-blinded, controlled trial. Fifty mRNA-vaccinated participants were enrolled and randomized to receive an mRNA booster (n = 26) or BBV152 (n = 24). Blood samples were collected pre-vaccination, and at Day 7, 28, 180 and 360 post-booster for analysis of humoral and cellular immune responses. Primary end point was the SARS-CoV-2 anti-spike antibody titer at day 28.
Recruitment began in January 2022 and was terminated early due to the BBV152 group meeting pre-specified criteria for futility. At Day 28 post-boost, mean SARS-CoV-2 spike antibody titers were lower with BBV152 (2004 IU/mL; 95 % confidence interval [CI], 1132-3548) vs mRNA (26,669 IU/mL; 95 % CI, 21,330-33,266; p < 0.0001), but comparable levels of spike-specific CD4 and cytotoxic T-cells were observed. Anti-spike antibody titers remained significantly different at Day 180: BBV152 4467 IU/mL (95 % CI, 1959-10,186) vs mRNA 20,749 IU/mL (95 % CI, 12,303-35,075; p = 0.0017). Levels of surrogate virus neutralizing antibodies against ancestral and Omicron subvariants BA.1 and BA.2 were significantly higher among mRNA recipients at Day 180, including after adjusting for intercurrent infection. By Day 360, anti-spike antibody titers and neutralizing antibody levels against Omicron subvariants became similar between vaccine groups. By the end of the study, 16 in each arm (mRNA 64 % and BBV152 69.6 %) had breakthrough infections and time to COVID-19 infection between vaccine groups were similar (p = 0.63).
Wild-type SARS-CoV-2 anti-spike antibody titer and surrogate virus neutralizing test levels against wild-type SARS-CoV-2 and Omicron subvariants BA.1/BA.2/BA.5 were significantly higher at Day 28 and 180 in individuals who received booster vaccination with an mRNA vaccine compared with BBV152.
NCT05142319.
Poh XY
,Torres-Ruesta A
,Yoong T
,Wong N
,Tan CW
,Rouers A
,Chavatte JM
,Goh YS
,Rao S
,Chia PY
,Ong SWX
,Lee TH
,Sadarangani SP
,Lin RJH
,Neo V
,Kam IKJ
,Huang Y
,Hor PX
,Loh CY
,PRIBIVAC study group
,Yeoh AY
,Lim DRX
,Chia W
,Ren EC
,Lin RTP
,Fong SW
,Renia L
,Lye DC
,Wang LF
,Ng LFP
,Young BE
... -
《-》
-
Efficacy, safety, and immunogenicity of SARS-CoV-2 mRNA vaccine (Omicron BA.5) LVRNA012: a randomized, double-blind, placebo-controlled phase 3 trial.
We aimed to evaluate the efficacy, safety, and immunogenicity of a SARS-CoV-2 mRNA vaccine (Omicron BA.5) LVRNA012 given as the booster in immunized but SARS-CoV-2 infection-free adults in China.
This is a single-center, randomized, double-blind, placebo-controlled phase 3 clinical trial enrolling healthy adult participants (≥18 years) who had completed two or three doses of inactivated COVID-19 vaccines at least 6 months before, in Bengbu, Anhui province, China. Eligible participants were randomly assigned (1:1) to receive a booster intramuscular vaccination with an LVRNA012 vaccine (100ug) or placebo. The primary endpoint was the protective efficacy of a booster dose of the LVRNA012 vaccine or placebo against symptomatic COVID-19 of any severity 14 days after vaccination. Laboratory-confirmed COVID-19 infections were identified from 14 days to 180 days after intervention, with active surveillance for symptomatic illness 8 times per month between 7 to 90 days and at least once per month between 90 to 180 days after intervention.
2615 participants were recruited and randomly assigned in a 1:1 ratio to either the vaccine group (1308) or the placebo group (1307). A total of 141 individuals (46 in the LVRNA012 group and 95 in the placebo group) developed symptomatic COVID-19 infection 14 days after the booster immunization, showing a vaccine efficacy of 51.9% (95% CI, 31.3% to 66.4%). Most infections were detected 90 days after intervention during a period when XBB was prevalent in the community. Adverse reactions were reported by 64% of participants after the LVRNA012 vaccination, but most of them were mild or moderate. The booster vaccination with the LVRNA012 mRNA vaccine could significantly enhance neutralizing antibody titers against the Omicron variant XBB.1.5 (GMT 132.3 [99.8, 175.4]) than did those in the placebo group (GMT 12.5 [8.4, 18.7]) at day 14 for the previously immunized individuals.
The LVRNA012 mRNA vaccine is immunogenic, and shows robust efficacy in preventing COVID-19 during the omicron-predominate period.
ClinicalTrials.gov, identifier NCT05745545.
Zhou H
,Zheng H
,Peng Y
,Su Y
,Yu X
,Wang W
,Li S
,Ding Y
,Jiao S
,Wang Y
,Zhu X
,Luo L
,Dong Z
,Liu L
,Zhang F
,Wu Q
,Li J
,Zhu F
... -
《Frontiers in Immunology》