-
Spartina alterniflora invasion benefits blue carbon sequestration in China.
Spartina alterniflora has rapidly and extensively encroached on China's coastline over the past decades. Among the coastal areas invaded by S. alterniflora, at most 93% are mudflats. However, the effect of S. alterniflora invasion on soil organic carbon (SOC) stocks of coastal mudflats has not been systematically studied on a national scale. Here, we quantified the nationwide changes in SOC stocks in coastal mudflats associated with S. alterniflora invasion between 1990 and 2020. We found that S. alterniflora invasion significantly enhanced SOC stocks in coastal China. Nonetheless, the benefit of S. alterniflora invasion of coastal SOC stock may be weakened by continuing human intervention. We found that S. alterniflora invading mudflats added 2.3 Tg SOC stocks to China's coastal blue carbon, while 1.78 Tg SOC stocks were lost mainly due to human activities, resulted in a net SOC stock gain of 0.52 Tg C. These findings overturned the traditionally thought that S. alterniflora invasion would reduce ecosystem services by highlighting that the historical invasion of S. alterniflora has broadly and consistently enhanced blue carbon stock in coastal China.
Zhang J
,Mao D
,Liu J
,Chen Y
,Kirwan M
,Sanders C
,Zhou J
,Lu Z
,Qin G
,Huang X
,Li H
,Yan H
,Jiao N
,Su J
,Wang F
... -
《-》
-
Effects of the comprehensive elimination of Spartina alterniflora along China's coast on blue carbon and scenario prediction after ecological restoration.
Salt marshes cover the largest area among the three types of traditional blue carbon ecosystems in China's coastal zone, with the introduced smooth cordgrass (Spartina alterniflora Loisel.) being dominant in these marshes. The effects of eradicating S. alterniflora nationwide and the subsequent ecological restoration on blue carbon are unclear. This paper evaluates the variation in blue carbon during the national S. alterniflora eradication campaign, which involves mechanical tillage from 2022 to 2025, and proposes three scenarios for blue carbon changes after native vegetation is reestablished by 2050. The results show that, in 2025, plant carbon stock and soil carbon stock will decrease by 1.38 Tg C and 1.21 Tg C, respectively, in the areas where S. alterniflora has been removed and managed. Although blue carbon is reduced in coastal wetlands in 2025, carbon stock is expected to increase in restored native vegetated wetlands by 2050. S. alterniflora is resilient and competitive, posing a high risk in secondary invasion. Scenario Ⅰ suggests that S. alterniflora marshes could almost recover to their original state from 2022, with 7.70 Tg C stored in plant and soil carbon stocks. Scenario Ⅱ involves native vegetated wetlands coexisting with invasive S. alterniflora marshlands, with a total carbon stock estimated at 7.15 Tg C, reflecting a decrease of 0.39 Tg C in soil carbon stock and by 0.16 Tg C in plant carbon stock. In Scenario Ⅲ, mudflats dominant and native vegetated habitats are reestablished only in suitable sites, with the total carbon stock estimated at 5.63 Tg C, a 26.9% decrease compared to 2022 levels. While eradicating invasive S. alterniflora and restoring native vegetation in China's coast enhance the ecosystem services, it reduces blue carbon stocks. Therefore, developing additional strategies to increase carbon storage in coastal wetlands is necessary.
Yang L
,Chi Y
,Lu H
,Sun G
,Lu Y
,Li H
,Luo Y
... -
《-》
-
Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics.
Coastal wetlands are among the most productive ecosystems and store large amounts of organic carbon (C)-the so termed "blue carbon." However, wetlands in the tropics and subtropics have been invaded by smooth cordgrass (Spartina alterniflora) affecting storage of blue C. To understand how S. alterniflora affects soil organic carbon (SOC) stocks, sources, stability, and their spatial distribution, we sampled soils along a 2500 km coastal transect encompassing tropical to subtropical climate zones. This included 216 samplings within three coastal wetland types: a marsh (Phragmites australis) and two mangroves (Kandelia candel and Avicennia marina). Using δ13 C, C:nitrogen (N) ratios, and lignin biomarker composition, we traced changes in the sources, stability, and storage of SOC in response to S. alterniflora invasion. The contribution of S. alterniflora-derived C up to 40 cm accounts for 5.6%, 23%, and 12% in the P. australis, K. candel, and A. marina communities, respectively, with a corresponding change in SOC storage of +3.5, -14, and -3.9 t C ha-1 . SOC storage did not follow the trend in aboveground biomass from the native to invasive species, or with vegetation types and invasion duration (7-15 years). SOC storage decreased with increasing mean annual precipitation (1000-1900 mm) and temperature (15.3-23.4℃). Edaphic variables in P. australis marshes remained stable after S. alterniflora invasion, and hence, their effects on SOC content were absent. In mangrove wetlands, however, electrical conductivity, total N and phosphorus, pH, and active silicon were the main factors controlling SOC stocks. Mangrove wetlands were most strongly impacted by S. alterniflora invasion and efforts are needed to focus on restoring native vegetation. By understanding the mechanisms and consequences of invasion by S. alterniflora, changes in blue C sequestration can be predicted to optimize storage can be developed.
Xia S
,Wang W
,Song Z
,Kuzyakov Y
,Guo L
,Van Zwieten L
,Li Q
,Hartley IP
,Yang Y
,Wang Y
,Andrew Quine T
,Liu C
,Wang H
... -
《-》
-
China's conservation and restoration of coastal wetlands offset much of the reclamation-induced blue carbon losses.
China's coastal wetlands have experienced large losses and gains with rapid coastal reclamation and restoration since the end of the 20th century. However, owing to the difficulties in mapping soil organic carbon (SOC) in blue carbon stocks of coastal wetlands on a national scale, little is known about the spatial pattern of SOC stock in China's coastal wetlands and the loss and gain of SOC stock following coastal reclamation, conservation, and restoration over the past decades. Here, we developed a SOC stock map in China's coastal wetlands at 30 m spatial resolution, analyzed the spatial variability and driving factors of SOC stocks, and finally estimated SOC losses and gains due to coastal reclamation and wetland management from 1990 to 2020. We found that the total SOC stocks in China's coastal wetlands were 77.8 Tg C by 2020 with 3.6 Tg C in mangroves, 8.8 Tg C in salt marshes, and 65.4 Tg C in mudflats. Temperature, rainfall, and seawater salinity exerted the highest relative contributions to SOC spatial variability. The spatial trend of SOC density gradually decreased from south to north except for Liaoning province, with the lowest density in Shandong province. About 24.9% (19.4 Tg C) of SOC stocks in China's coastal wetlands were lost due to high-intensity reclamation, but SOC stock gained from conservation and restoration offset the reclamation-induced losses by 58.2% (11.3 Tg C) over the past three decades. These findings demonstrated the great potential of conservation and restoration of coastal wetlands in reversing the loss trend of blue carbon and contributing to the mitigation of climate change toward carbon neutrality. Our study provides significant spatial insights into the stocks, sequestration, and recovery capacity of blue carbon following rapid urbanization and management actions, which benefit the progress of global blue carbon management.
Fan B
,Li Y
《-》
-
Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha(-1) for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57-505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (P < 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha(-1) in open water, bare tidal flat and S. salsa marsh, respectively, compared with -0.51 kg N2O ha(-1) for S. alterniflora marsh and -0.25 kg N2O ha(-1) for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha(-1) yr(-1) in the top 100 cm soil profile, a value that was 2.63- to 8.78-fold higher than in native plant marshes. The estimated GWP was 1.78, -0.60, -4.09, and -1.14 Mg CO2 eq ha(-1) yr(-1) in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to -11.30 Mg CO2 eq ha(-1) yr(-1) in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China.
Yuan J
,Ding W
,Liu D
,Kang H
,Freeman C
,Xiang J
,Lin Y
... -
《-》