Prediction of TNFRSF9 expression and molecular pathological features in thyroid cancer using machine learning to construct Pathomics models.

来自 PUBMED

作者:

Liu YZhang JLi SChen WWu RHao ZXu J

展开

摘要:

The TNFRSF9 molecule is pivotal in thyroid carcinoma (THCA) development. This study utilizes Pathomics techniques to predict TNFRSF9 expression in THCA tissue and explore its molecular mechanisms. Transcriptome data, pathology images, and clinical information from the cancer genome atlas (TCGA) were analyzed. Image segmentation and feature extraction were performed using the OTSU's algorithm and pyradiomics package. The dataset was split for training and validation. Features were selected using maximum relevance minimum redundancy recursive feature elimination (mRMR_RFE) and modeling conducted with the gradient boosting machine (GBM) algorithm. Model evaluation included receiver operating characteristic curve (ROC) analysis. The Pathomics model output a probabilistic pathomics score (PS) for gene expression prediction, with its prognostic value assessed in TNFRSF9 expression groups. Subsequent analysis involved gene set variation analysis (GSVA), immune gene expression, cell abundance, immunotherapy susceptibility, and gene mutation analysis. High TNFRSF9 expression correlated with worsened progression-free interval (PFI) and acted as an independent risk factor [hazard ratio (HR) = 2.178, 95% confidence interval (CI) 1.045-4.538, P = 0.038]. Nine pathohistological features were identified. The GBM Pathomics model demonstrated good prediction efficacy [area under the curve (AUC) 0.819 and 0.769] and clinical benefits. High PS was a PFI risk factor (HR = 2.156, 95% CI 1.047-4.440, P = 0.037). Patients with high PS potentially exhibited enriched pathways, increased TIGIT gene expression, Tregs infiltration (P < 0.0001), and higher rates of gene mutations (BRAF, TTN, TG). The GBM Pathomics model constructed based on the pathohistological features of H&E-stained sections well predicted the expression level of TNFRSF9 molecules in THCA.

收起

展开

DOI:

10.1007/s12020-024-03862-9

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(32)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读