-
Rapamycin prevents cyclophosphamide-induced ovarian follicular loss and potentially inhibits tumour proliferation in a breast cancer xenograft mouse model.
To what extent and via what mechanism does the concomitant administration of rapamycin (a follicle activation pathway inhibitor and antitumour agent) and cyclophosphamide (a highly toxic ovarian anticancer agent) prevent cyclophosphamide-induced ovarian reserve loss and inhibit tumour proliferation in a breast cancer xenograft mouse model?
Daily concomitant administration of rapamycin and a cyclic regimen of cyclophosphamide, which has sufficient antitumour effects as a single agent, suppressed cyclophosphamide-induced primordial follicle loss by inhibiting primordial follicle activation in a breast cancer xenograft mouse model, suggesting the potential of an additive inhibitory effect against tumour proliferation.
Cyclophosphamide stimulates primordial follicles by activating the mammalian target of the rapamycin (mTOR) pathway, resulting in the accumulation of primary follicles, most of which undergo apoptosis. Rapamycin, an mTOR inhibitor, regulates primordial follicle activation and exhibits potential inhibitory effects against breast cancer cell proliferation.
To assess ovarian follicular apoptosis, 3 weeks after administering breast cancer cells, 8-week-old mice were randomized into three treatment groups: control, cyclophosphamide, and cyclophosphamide + rapamycin (Cy + Rap) (n = 5 or 6 mice/group). Mice were treated with rapamycin or vehicle control for 1 week, followed by a single dose of cyclophosphamide or vehicle control. Subsequently, the ovaries were resected 24 h after cyclophosphamide administration (short-term treatment groups). To evaluate follicle abundance and the mTOR pathway in ovaries, as well as the antitumour effects and impact on the mTOR pathway in tumours, 8-week-old xenograft breast cancer transplanted mice were randomized into three treatment groups: vehicle control, Cy, and Cy + Rap (n = 6 or 7 mice/group). Rapamycin (5 mg/kg) or the vehicle was administered daily for 29 days. Cyclophosphamide (120 mg/kg) or the vehicle was administered thrice weekly (long-term treatment groups). The tumour diameter was measured weekly. Seven days after the last cyclophosphamide treatment, the ovaries were harvested, fixed, and sectioned (for follicle counting) or frozen (for further analysis). Similarly, the tumours were resected and fixed or frozen.
Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) was performed to examine ovarian follicular apoptosis in the short-term treatment groups. All subsequent experiments were conducted in the long-term treatment groups. Tumour growth was evaluated using the tumour volume index. The tumour volume index indicates the relative volume, compared to the volume 3 weeks after tumour cell injection (at treatment initiation) set to 100%. Tumour cell proliferation was evaluated by Ki-67 immunostaining. Activation of the mTOR pathway in tumours was assessed using the protein extracts from tumours and analysed by western blotting. Haematoxylin and eosin staining of ovaries was used to perform differential follicle counts for primordial, primary, secondary, antral, and atretic follicles. Activation of the mTOR pathway in ovaries was assessed using protein extracts from whole ovaries and analysed by western blotting. Localization of mTOR pathway activation within ovaries was assessed by performing anti-phospho-S6 kinase (downstream of mTOR pathway) immunohistochemistry.
Ovaries of the short-term treatment groups were resected 24 h after cyclophosphamide administration and subjected to TUNEL staining of apoptotic cells. No TUNEL-positive primordial follicles were detected in the control, Cy, and Cy + Rap groups. Conversely, many granulosa cells of growing follicles were TUNEL positive in the Cy group but negative in the control and Cy + Rap groups. All subsequent experimental results were obtained from the long-term treatment groups. The tumour volume index stabilized at a mean of 160-200% in the Cy group and 130% in the Cy + Rap group throughout the treatment period. In contrast, tumours in the vehicle control group grew continuously with a mean tumour volume index of 600%, significantly greater than that of the two treatment groups. Based on the western blot analysis of tumours, the mTOR pathway was activated in the vehicle control group and downregulated in the Cy + Rap group when compared with the control and Cy groups. Ki-67 immunostaining of tumours showed significant inhibition of cell proliferation in the Cy + Rap group when compared with that in the control and Cy groups. The ovarian follicle count revealed that the Cy group had significantly fewer primordial follicles (P < 0.001) than the control group, whereas the Cy + Rap group had significantly higher number of primordial follicles (P < 0.001, 2.5 times) than the Cy group. The ratio of primary to primordial follicles was twice as high in the Cy group than in the control group; however, no significant difference was observed between the control group and the Cy + Rap group. Western blot analysis of ovaries revealed that the mTOR pathway was activated by cyclophosphamide and inhibited by rapamycin. The phospho-S6 kinase (pS6K)-positive primordial follicle rate was 2.7 times higher in the Cy group than in the control group. However, this effect was suppressed to a level similar to the control group in the Cy + Rap group.
None.
The combinatorial treatment of breast cancer tumours with rapamycin and cyclophosphamide elicited inhibitory effects on cell proliferative potential compared to cyclophosphamide monotherapy. However, no statistically significant additive effect was observed on tumour volume. Thus, the beneficial antitumour effect afforded by rapamycin administration on breast cancer could not be definitively proven. Although rapamycin has ovarian-protective effects, it does not fully counteract the ovarian toxicity of cyclophosphamide. Nevertheless, rapamycin is advantageous as an ovarian protective agent as it can be used in combination with other ovarian protective agents, such as hormonal therapy. Hence, in combination with other agents, mTOR inhibitors may be sufficiently ovario-protective against high-dose and cyclic cyclophosphamide regimens.
Compared with a cyclic cyclophosphamide regimen that replicates human clinical practice under breast cancer-bearing conditions, the combination with rapamycin mitigates the ovarian follicle loss of cyclophosphamide without interfering with the anticipated antitumour effects. Hence, rapamycin may represent a new non-invasive treatment option for cyclophosphamide-induced ovarian dysfunction in breast cancer patients.
This work was not financially supported. The authors declare that they have no conflict of interest.
Tanaka Y
,Amano T
,Nakamura A
,Yoshino F
,Takebayashi A
,Takahashi A
,Yamanaka H
,Inatomi A
,Hanada T
,Yoneoka Y
,Tsuji S
,Murakami T
... -
《-》
-
Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
《Jove-Journal of Visualized Experiments》
-
Upregulated let-7 expression in the follicular fluid of patients with endometriomas leads to dysfunction of granulosa cells through targeting of IGF1R.
What molecular mechanisms underlie the decline in ovarian reserve as the number and quality of oocytes decrease in patients with ovarian endometriomas (OEM)?
Elevated expression of the let-7 micro(mi)RNAs in the follicular microenvironment of OEM-affected ovaries targets the expression of type 1 insulin-like growth factor receptor (IGF1R) in granulosa cell (GC) and disrupts their proliferation, steroid hormone secretion levels, adenosine triphosphate (ATP) energy metabolism, and reactive oxygen species (ROS) oxidative stress levels.
Patients with OEM exhibit diminished ovarian reserve, characterized by reduced oocyte quantity and quality. Fibrotic changes in the ovarian tissue surrounding the OEM create a disruptive microenvironment for follicular growth and development.
This is a cross-sectional study aimed to elucidate the molecular mechanisms underlying the impact of OEM on follicular development. Initially, miRNA expression profiles in follicular fluid (FF) samples were sequenced from patients with infertility related to OEM (N = 3) and male factor (MF) infertility (N = 3), with the latter serving as the control group. Differentially expressed miRNAs were validated in additional samples from each group (N = 55 in OEM group and N = 45 in MF group) to confirm candidate miRNAs. The study also investigated indicators associated with GCs dysfunction in vitro on rat GCs. Subsequently, rat models of OEM were established through endometrial allogeneic transplantation, and fertility experiments were conducted to assess the let-7/IGF1R axis response to OEM in vivo. Patient samples were collected between May 2018 and April 2019, and the mechanistic study was conducted over the subsequent three years.
FF and GC samples were obtained from infertile patients undergoing IVF treatment for OEM and MF related infertility. miRNA expression profiles in FF samples were analyzed using second-generation high-throughput sequencing technology, and candidate miRNAs were validated through quantitative PCR (qPCR). In the in vitro experiments conducted with rat GCs, cell proliferation was assessed using the CCK-8 assay, while steroid hormone concentrations were measured using chemiluminescence. ATP content was determined with an ATP assay kit, and levels of ROS were quantified using flow cytometry. A dual luciferase reporter gene assay was employed to identify the target gene of let-7 based on the construction of a IGF1R reporter gene plasmid using 293T cells. Western blotting was utilized to evaluate the expression of IGF1R in GCs, as well as its downstream proteins, and changes in signaling pathways following let-7 agomir/antagomir transfection and/or Igf1r silencing. In the in vivo OEM rat models, alterations in ovarian structure and cyst morphology were observed using hematoxylin and eosin staining. The expressions of let-7 and Igf1r in GCs were evaluated through qPCR, while variations in IGF1R expression were investigated with immunohistochemistry.
The cohort of patients with ovarian OEM in this study exhibited significantly decreased antral follicle counts, oocyte retrieval numbers, and normal fertilization rates compared to the control group with MF. The expression of the let-7 miRNA family was markedly upregulated in the FF and GCs of OEM patients. Transfection of rat GCs with let-7 agonists diminished the functions of GCs, including disrupted cell proliferation, mitochondrial oxidative phosphorylation, and steroid hormone secretion, while transfection of rat GCs with let-7 antagonists caused the opposite effects. Luciferase reporter gene experiments confirmed that let-7 complementarily bound to the 3'-untranslated regions of IGF1R. Stimulation of let-7 expression in rat GCs led to a significant decrease in IGF1R expression, while inhibition of let-7 increased IGF1R expression. The expression of IGF1R in the GCs of OEM patients was also significantly reduced compared to MF patients. Silencing of Igf1r led to the dysfunction of GCs, similar to the effects of let-7 agonization, as demonstrated by the downregulation of key proteins involved in cell proliferation (CCND2 and CCND3) and oestradiol synthesis, as well as an increase in progesterone synthesis (StAR), while implicating the PI3K-Akt and MAPK signaling pathways. The antagonistic effect of let-7 on GCs was ineffective when Igf1r was silenced. Conversely, the agonistic effect of let-7 on GCs could be reversed by stimulation with the IGF1R ligand IGF-1. These findings suggested that let-7 regulated the proliferation, differentiation, and ATP synthesis of GCs through targeting IGF1R. The OEM rat model demonstrated alterations in ovarian morphology and structure, along with reduced fertility. Let-7 expression was significantly upregulated in GCs of OEM rats compared to normal rats, while Igf1r and IGF1R expression in pre-ovulatory follicular GCs were notably downregulated, supporting the notion that elevated let-7 expression in the follicular microenvironment of OEM inhibited IGF1R, leading to abnormal GC function and impacting fertility at the molecular level.
N/A.
The synthesis and secretion mechanisms of steroid hormones are intricate and complex. Some enzymes that regulate oestrogen synthesis also play a role in progesterone synthesis. Moreover, certain receptors can respond to multiple hormone signals. Therefore, in this study, the expression patterns of key enzymes such as CYP17A, CYP11A1, HSD3B2, StAR, and receptors including AR, LHCGR, FSHR, ESR2, might be influenced by various factors and might not demonstrate complete consistency.
Future research will concentrate on investigating the potential impact of ovarian stromal cells on the external microenvironment of follicle growth. Additionally, screening for small molecule drugs that target let-7 and IGF1R actions can be conducted to intervene and modify the ovarian microenvironment, ultimately enhancing ovarian function.
This study received funding from the National Natural Science Foundation of China (grant number 82301851 to L.B.S., grant numbers U23A20403 and U20A20349 to S.Y.Z., and grant number 82371637 to Y.D.D.) and the Natural Science Foundation of Zhejiang Province (grant LTGY23H040010 to F.Z.). The authors have no conflicts of interest to declare.
Shi L
,Ying H
,Dai Y
,Rong Y
,Chen J
,Zhou F
,Wang S
,Xu S
,Tong X
,Zhang S
... -
《-》
-
Defining the optimum strategy for identifying adults and children with coeliac disease: systematic review and economic modelling.
Elwenspoek MM
,Thom H
,Sheppard AL
,Keeney E
,O'Donnell R
,Jackson J
,Roadevin C
,Dawson S
,Lane D
,Stubbs J
,Everitt H
,Watson JC
,Hay AD
,Gillett P
,Robins G
,Jones HE
,Mallett S
,Whiting PF
... -
《-》
-
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.
Ovarian cancer is the seventh most common cancer among women and a leading cause of death from gynaecological malignancies. Epithelial ovarian cancer is the most common type, accounting for around 90% of all ovarian cancers. This specific type of ovarian cancer starts in the surface layer covering the ovary or lining of the fallopian tube. Surgery is performed either before chemotherapy (upfront or primary debulking surgery (PDS)) or in the middle of a course of treatment with chemotherapy (neoadjuvant chemotherapy (NACT) and interval debulking surgery (IDS)), with the aim of removing all visible tumour and achieving no macroscopic residual disease (NMRD). The aim of this review is to investigate the prognostic impact of size of residual disease nodules (RD) in women who received upfront or interval cytoreductive surgery for advanced (stage III and IV) epithelial ovarian cancer (EOC).
To assess the prognostic impact of residual disease after primary surgery on survival outcomes for advanced (stage III and IV) epithelial ovarian cancer. In separate analyses, primary surgery included both upfront primary debulking surgery (PDS) followed by adjuvant chemotherapy and neoadjuvant chemotherapy followed by interval debulking surgery (IDS). Each residual disease threshold is considered as a separate prognostic factor.
We searched CENTRAL (2021, Issue 8), MEDLINE via Ovid (to 30 August 2021) and Embase via Ovid (to 30 August 2021).
We included survival data from studies of at least 100 women with advanced EOC after primary surgery. Residual disease was assessed as a prognostic factor in multivariate prognostic models. We excluded studies that reported fewer than 100 women, women with concurrent malignancies or studies that only reported unadjusted results. Women were included into two distinct groups: those who received PDS followed by platinum-based chemotherapy and those who received IDS, analysed separately. We included studies that reported all RD thresholds after surgery, but the main thresholds of interest were microscopic RD (labelled NMRD), RD 0.1 cm to 1 cm (small-volume residual disease (SVRD)) and RD > 1 cm (large-volume residual disease (LVRD)).
Two review authors independently abstracted data and assessed risk of bias. Where possible, we synthesised the data in meta-analysis. To assess the adequacy of adjustment factors used in multivariate Cox models, we used the 'adjustment for other prognostic factors' and 'statistical analysis and reporting' domains of the quality in prognosis studies (QUIPS) tool. We also made judgements about the certainty of the evidence for each outcome in the main comparisons, using GRADE. We examined differences between FIGO stages III and IV for different thresholds of RD after primary surgery. We considered factors such as age, grade, length of follow-up, type and experience of surgeon, and type of surgery in the interpretation of any heterogeneity. We also performed sensitivity analyses that distinguished between studies that included NMRD in RD categories of < 1 cm and those that did not. This was applicable to comparisons involving RD < 1 cm with the exception of RD < 1 cm versus NMRD. We evaluated women undergoing PDS and IDS in separate analyses.
We found 46 studies reporting multivariate prognostic analyses, including RD as a prognostic factor, which met our inclusion criteria: 22,376 women who underwent PDS and 3697 who underwent IDS, all with varying levels of RD. While we identified a range of different RD thresholds, we mainly report on comparisons that are the focus of a key area of clinical uncertainty (involving NMRD, SVRD and LVRD). The comparison involving any visible disease (RD > 0 cm) and NMRD was also important. SVRD versus NMRD in a PDS setting In PDS studies, most showed an increased risk of death in all RD groups when those with macroscopic RD (MRD) were compared to NMRD. Women who had SVRD after PDS had more than twice the risk of death compared to women with NMRD (hazard ratio (HR) 2.03, 95% confidence interval (CI) 1.80 to 2.29; I2 = 50%; 17 studies; 9404 participants; moderate-certainty). The analysis of progression-free survival found that women who had SVRD after PDS had nearly twice the risk of death compared to women with NMRD (HR 1.88, 95% CI 1.63 to 2.16; I2 = 63%; 10 studies; 6596 participants; moderate-certainty). LVRD versus SVRD in a PDS setting When we compared LVRD versus SVRD following surgery, the estimates were attenuated compared to NMRD comparisons. All analyses showed an overall survival benefit in women who had RD < 1 cm after surgery (HR 1.22, 95% CI 1.13 to 1.32; I2 = 0%; 5 studies; 6000 participants; moderate-certainty). The results were robust to analyses of progression-free survival. SVRD and LVRD versus NMRD in an IDS setting The one study that defined the categories as NMRD, SVRD and LVRD showed that women who had SVRD and LVRD after IDS had more than twice the risk of death compared to women who had NMRD (HR 2.09, 95% CI 1.20 to 3.66; 310 participants; I2 = 56%, and HR 2.23, 95% CI 1.49 to 3.34; 343 participants; I2 = 35%; very low-certainty, for SVRD versus NMRD and LVRD versus NMRD, respectively). LVRD versus SVRD + NMRD in an IDS setting Meta-analysis found that women who had LVRD had a greater risk of death and disease progression compared to women who had either SVRD or NMRD (HR 1.60, 95% CI 1.21 to 2.11; 6 studies; 1572 participants; I2 = 58% for overall survival and HR 1.76, 95% CI 1.23 to 2.52; 1145 participants; I2 = 60% for progression-free survival; very low-certainty). However, this result is biased as in all but one study it was not possible to distinguish NMRD within the < 1 cm thresholds. Only one study separated NMRD from SVRD; all others included NMRD in the SVRD group, which may create bias when comparing with LVRD, making interpretation challenging. MRD versus NMRD in an IDS setting Women who had any amount of MRD after IDS had more than twice the risk of death compared to women with NMRD (HR 2.11, 95% CI 1.35 to 3.29, I2 = 81%; 906 participants; very low-certainty).
In a PDS setting, there is moderate-certainty evidence that the amount of RD after primary surgery is a prognostic factor for overall and progression-free survival in women with advanced ovarian cancer. We separated our analysis into three distinct categories for the survival outcome including NMRD, SVRD and LVRD. After IDS, there may be only two categories required, although this is based on very low-certainty evidence, as all but one study included NMRD in the SVRD category. The one study that separated NMRD from SVRD showed no improved survival outcome in the SVRD category, compared to LVRD. Further low-certainty evidence also supported restricting to two categories, where women who had any amount of MRD after IDS had a significantly greater risk of death compared to women with NMRD. Therefore, the evidence presented in this review cannot conclude that using three categories applies in an IDS setting (very low-certainty evidence), as was supported for PDS (which has convincing moderate-certainty evidence).
Bryant A
,Hiu S
,Kunonga PT
,Gajjar K
,Craig D
,Vale L
,Winter-Roach BA
,Elattar A
,Naik R
... -
《Cochrane Database of Systematic Reviews》