Characterization of linezolid- and methicillin-resistant coagulase-negative staphylococci in a tertiary hospital in China.

来自 PUBMED

作者:

Liu CYu JChen CLi XYe YDong YYing XLi HWang W

展开

摘要:

Recently, linezolid-resistant staphylococci have become an emerging problem worldwide. Understanding the mechanisms of resistance, molecular epidemiology and transmission of linezolid-resistant CoNS in hospitals is very important. The antimicrobial susceptibilities of all isolates were determined by the microdilution method. The resistance mechanisms and molecular characteristics of the strains were determined using whole-genome sequencing and PCR. All the strains were resistant to oxacillin and carried the mecA gene; 13 patients (36.1%) had prior linezolid exposure. Most S. epidermidis and S. hominis isolates were ST22 and ST1, respectively. MLST typing and evolutionary analysis indicated most linezolid-resistant CoNS strains were genetically related. In this study, we revealed that distinct CoNS strains have different mechanisms of linezolid resistance. Among ST22-type S. epidermidis, acquisition of the T2504A and C2534T mutations in the V domain of the 23 S rRNA gene, as well as mutations in the ribosomal proteins L3 (L101V, G152D, and D159Y) and L4 (N158S), were linked to the development of linezolid resistance. In S. cohnii isolates, cfr, S158Y and D159Y mutations in the ribosomal protein L3 were detected. Additionally, emergence of the G2576T mutation and the cfr gene were major causes of linezolid resistance in S. hominis isolates. The cfr gene, G2576T and C2104T mutations, M156T change in L3 protein, and I188S change in L4 protein were found in S. capitis isolates. The emergence of linezolid-resistant CoNS in the environment is concerning because it involves clonal dissemination and frequently coexists with various drug resistance mechanisms.

收起

展开

DOI:

10.1186/s12879-024-09376-z

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(111)

参考文献(28)

引证文献(1)

来源期刊

BMC INFECTIOUS DISEASES

影响因子:3.663

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读