Construction of ferroptosis-related prediction model for pathogenesis, diagnosis and treatment of ruptured abdominal aortic aneurysm.

来自 PUBMED

作者:

Wang AZhou L

展开

摘要:

Abdominal aortic aneurysm (AAA) is a dangerous cardiovascular disease, which often brings great psychological burden and economic pressure to patients. If AAA rupture occurs, it is a serious threat to patients' lives. Therefore, it is of clinical value to actively explore the pathogenesis of ruptured AAA and prevent its occurrence. Ferroptosis is a new type of cell death dependent on lipid peroxidation, which plays an important role in many cardiovascular diseases. In this study, we used online data and analysis of ferroptosis-related genes to uncover the formation of ruptured AAA and potential therapeutic targets. We obtained ferroptosis-related differentially expressed genes (Fe-DEGs) from GSE98278 dataset and 259 known ferroptosis-related genes from FerrDb website. Enrichment analysis of differentially expressed genes (DEGs) was performed by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG). Receiver Operating characteristic (ROC) curve was employed to evaluate the diagnostic abilities of Fe-DEGs. Transcription factors and miRNAs of Fe-DEGs were identified through PASTAA and miRDB, miRWalk, TargetScan respectively. Single-sample gene set enrichment analysis (ssGSEA) was used to observe immune infiltration between the stable group and the rupture group. DGIdb database was performed to find potential targeted drugs of DEGs. GO and KEGG enrichment analysis found that DEGs mainly enriched in "cellular divalent inorganic cation homeostasis," "cellular zinc ion homeostasis," "divalent inorganic cation homeostasis," "Mineral absorption," "Cytokine - cytokine receptor interaction," "Coronavirus disease - COVID-19." Two up-regulated Fe-DEGs MT1G and DDIT4 were found to further analysis. Both single and combined applications of MT1G and DDIT4 showed good diagnostic efficacy (AUC = 0.8254, 0.8548, 0.8577, respectively). Transcription factors STAT1 and PU1 of MT1G and ARNT and MAX of DDIT4 were identified. Meanwhile, has_miR-548p-MT1G pairs, has_miR-53-3p/has_miR-181b-5p/ has_miR-664a-3p-DDIT4 pairs were found. B cells, NK cells, Th2 cells were high expression in the rupture group compared with the stable group, while DCs, Th1 cells were low expression in the rupture group. Targeted drugs against immunity, GEMCITABINE and INDOMETHACIN were discovered. We preliminarily explored the clinical significance of Fe-DEGs MT1G and DDIT4 in the diagnosis of ruptured AAA, and proposed possible upstream regulatory transcription factors and miRNAs. In addition, we also analyzed the immune infiltration of stable and rupture groups, and found possible targeted drugs for immunotherapy.

收起

展开

DOI:

10.1097/MD.0000000000038134

被引量:

0

年份:

2024

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(129)

参考文献(38)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读