Assessing the Responses of Large Language Models (ChatGPT-4, Gemini, and Microsoft Copilot) to Frequently Asked Questions in Breast Imaging: A Study on Readability and Accuracy.

来自 PUBMED

作者:

Tepe MEmekli E

展开

摘要:

Background Large language models (LLMs), such as ChatGPT-4, Gemini, and Microsoft Copilot, have been instrumental in various domains, including healthcare, where they enhance health literacy and aid in patient decision-making. Given the complexities involved in breast imaging procedures, accurate and comprehensible information is vital for patient engagement and compliance. This study aims to evaluate the readability and accuracy of the information provided by three prominent LLMs, ChatGPT-4, Gemini, and Microsoft Copilot, in response to frequently asked questions in breast imaging, assessing their potential to improve patient understanding and facilitate healthcare communication. Methodology We collected the most common questions on breast imaging from clinical practice and posed them to LLMs. We then evaluated the responses in terms of readability and accuracy. Responses from LLMs were analyzed for readability using the Flesch Reading Ease and Flesch-Kincaid Grade Level tests and for accuracy through a radiologist-developed Likert-type scale. Results The study found significant variations among LLMs. Gemini and Microsoft Copilot scored higher on readability scales (p < 0.001), indicating their responses were easier to understand. In contrast, ChatGPT-4 demonstrated greater accuracy in its responses (p < 0.001). Conclusions While LLMs such as ChatGPT-4 show promise in providing accurate responses, readability issues may limit their utility in patient education. Conversely, Gemini and Microsoft Copilot, despite being less accurate, are more accessible to a broader patient audience. Ongoing adjustments and evaluations of these models are essential to ensure they meet the diverse needs of patients, emphasizing the need for continuous improvement and oversight in the deployment of artificial intelligence technologies in healthcare.

收起

展开

DOI:

10.7759/cureus.59960

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(272)

参考文献(19)

引证文献(3)

来源期刊

Cureus

影响因子:0

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读