Exploring the efficacy and mechanism of Bailing capsule to improve polycystic ovary syndrome in mice based on intestinal-derived LPS-TLR4 pathway.

来自 PUBMED

作者:

Guan HRLi BZhang ZHWu HSWang NChen XFZhou CLBian XRLi LXu WFHe XLDong YJJiang NHSu JLv GYChen SH

展开

摘要:

Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with reproductive dysfunction and metabolic abnormalities, particularly characterized by insulin resistance and chronic low-grade inflammation. Multiple clinical studies have clearly demonstrated the significant efficacy and safety of the combination of Bailing capsules (BL) in the treatment of PCOS, but its pharmacological effects and mechanisms still require further study. To evaluate the effect of BL on improving PCOS in mice and explore the mechanism. In this study, Dehydroepiandrosterone (DHEA) injection was administered alone and in combination with a high-fat and high-sugar diet to induce PCOS-like mouse. They were randomly divided into five groups: normal group (N), PCOS group (P), Bailing capsule low-dose group (BL-L), Bailing capsule high-dose group (BL-H) and Metformin + Daine-35 group (M + D). Firstly, the effects of BL on ovarian lesions, serum hormone levels, HOMA-IR, intestinal barrier function, inflammation levels, along with the expression of IRS1, PI3K, AKT, TLR4, Myd88, NF-κB p65, TNF-α, IL-6, and Occludin of the ovary, liver and colon were investigated. Finally, the composition of the gut microbiome of fecal was tested. The administration of BL significantly reduced body weight, improved hormone levels, improved IR, and attenuated pathological damage to ovarian tissues, up-regulated the expression of IRS1, PI3K, and AKT in liver. It also decreased serum LPS, TNF-α, and IL-6 levels, while downregulating the expression of Myd88, TLR4, and NF-κB p65. Additionally, BL improved intestinal barrier damage and upregulated the expression of Occludin. Interestingly, the abundance of norank_f__Muribaculacea and Lactobacillus was down-regulated, while the abundance of Akkermansia was significantly up-regulated. The results of the study showed that BL exerts a treatment PCOS effect, which may be related to the modulation of the gut microbiota, the improvement of insulin resistance and the intestinal-derived LPS-TLR4 inflammatory pathway. Our research will provide a theoretical basis for the clinical treatment of PCOS.

收起

展开

DOI:

10.1016/j.jep.2024.118274

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(152)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读