-
Photodynamic therapy inhibits cancer progression and induces ferroptosis and apoptosis by targeting P53/GPX4/SLC7A11 signaling pathways in cholangiocarcinoma.
Cholangiocarcinoma (CCA) is a malignant tumor with a poor prognosis. The specific mechanism of photodynamic therapy (PDT) in treating CCA remains unclear. This study aims to investigate the mechanisms of PDT in the treatment of CCA and try to improve the therapeutic effect of PDT by intervening associated signaling pathways.
The Cell Counting Kit-8 (CCK-8) was used to examine the cytotoxicity of CCA cell lines following PDT. Apoptosis and reactive oxygen species (ROS) levels were measured by flow cytometry. A transmission electron microscope was used to study the changes in cell mitochondria after PDT. The levels of glutathione (GSH), malondialdehyde (MDA), ferrous iron (Fe2+), lactate dehydrogenase (LDH), and lipid peroxide (LPO) were determined. Changes in the expression of apoptosis and ferroptosis-related proteins were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Xenograft tumor models were developed to investigate the effects of PDT on tumor proliferation, apoptosis, and ferroptosis in vivo.
PDT inhibited tumor proliferation and induced apoptosis both in vivo and in vitro. This treatment led to swelling and damage of the mitochondria in affected cells. Furthermore, ROS levels rose, accompanied by an increase in the proportion of apoptotic-positive cells. The expressions of Bax and Caspase-3 were upregulated, while the Bcl-2 was downregulated. Meanwhile, PDT triggered ferroptosis, marked by decreased expressions of GPX4 and SLC7A11, and reduced GSH levels. This was accompanied by upregulation of P53 expression and heightened levels of Fe2+, LPO, MDA, and LDH. After inducing the ferroptosis pathway, the therapeutic effect of PDT was enhanced, the tumor tissue was further reduced, and the degree of malignancy was reduced.
PDT promotes apoptosis and ferroptosis of cholangiocarcinoma cells by activating the P53/SLC7A11/GPX4 signaling pathway and inhibits the growth of cholangiocarcinoma. Inducing ferroptosis can enhance the effectiveness of photodynamic therapy.
Yan X
,Li Z
,Chen H
,Yang F
,Tian Q
,Zhang Y
... -
《-》
-
Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis.
Driven by iron-dependent lipid peroxidation, ferroptosis is regulated by p53 and solute carrier family 7 member 11 (SLC7A11)/glutathione/glutathione peroxidase 4 (GPX4) axis in colorectal cancer (CRC). This study aimed to investigate the influence of curcumin (CUR) on ferroptosis in CRC. The efficacies of CUR on the malignant phenotype of CRC cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, wound healing, and clonogenic assays. The effects of CUR on ferroptosis of CRC cells were evaluated by transmission electron microscopy, lactate dehydrogenase release assay, Fe2+ staining, and analyses of reactive oxygen species, lipid peroxide, malondialdehyde, and glutathione levels. CUR's targets in ferroptosis were predicted by network pharmacological study and molecular docking. With SW620 xenograft tumors, the efficacy of CUR on CRC was investigated, and the effects of CUR on ferroptosis were assessed by detection of Fe2+, malondialdehyde, and glutathione levels. The effects of CUR on expressions of p53, SLC7A11, and GPX4 in CRC cells and tumors were analyzed by quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry. CUR suppressed the proliferation, migration, and clonogenesis of CRC cells and xenograft tumor growth by causing ferroptosis, with enhanced lactate dehydrogenase release and Fe2+, reactive oxygen species, lipid peroxide, and malondialdehyde levels, but attenuated glutathione level in CRC. In silico study indicated that CUR may bind p53, SLC7A11, and GPX4, consolidated by that CUR heightened p53 but attenuated SLC7A11 and GPX4 mRNA and protein levels in CRC. CUR may exert an inhibitory effect on CRC by inducing ferroptosis via regulation of p53 and SLC7A11/glutathione/GPX4 axis.
Ming T
,Lei J
,Peng Y
,Wang M
,Liang Y
,Tang S
,Tao Q
,Wang M
,Tang X
,He Z
,Liu X
,Xu H
... -
《-》
-
SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling.
SHARPIN is a tumor-associated gene involved in the growth and proliferation of many tumor types. A function of SHARPIN in cholangiocarcinoma (CCA) is so far unclear. Here, we studied the role and function of SHARPIN in CCA and revealed its relevant molecular mechanism. The expression of SHARPIN was analyzed in cholangiocarcinoma tissues from patients using immunohistochemistry, quantitative PCR, and western blot analysis. Expression of SHARPIN was suppressed/overexpressed by siRNA silencing or lentiviral overexpression vector, and the effect on cell proliferation was determined by the CCK-8 assay and flow cytometry. Accumulation of reactive oxygen species was measured with MitoTracker, and JC-1 staining showed mitochondrial fission/fusion and mitochondrial membrane potential changes as a result of the silencing or overexpression. The ferroptosis marker solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), and the antioxidant enzymes superoxide dismutase 1 (SOD-1) and SOD-2 were analyzed by western blot. The results showed that SHARPIN expression was increased in CCA tissue, and this was involved in cell proliferation. SHARPIN silencing resulted in accumulated reactive oxygen species, reduced mitochondrial fission, and a reduced mitochondrial membrane potential. Silencing of SHARPIN inhibited the ubiquitination and degradation of p53, and downregulated levels of SLC7A11, GPX4, SOD-1, and SOD-2, all of which contributed to excessive oxidative stress that leads to ferroptosis. Overexpression of SHARPIN would reverse the above process. The collected data suggest that in CCA, SHARPIN-mediated cell ferroptosis via the p53/SLC7A11/GPX4 signaling pathway is inhibited. Targeting SHARPIN might be a promising approach for the treatment of CCA.
Zeng C
,Lin J
,Zhang K
,Ou H
,Shen K
,Liu Q
,Wei Z
,Dong X
,Zeng X
,Zeng L
,Wang W
,Yao J
... -
《-》
-
HSDL2 knockdown promotes the progression of cholangiocarcinoma by inhibiting ferroptosis through the P53/SLC7A11 axis.
Human hydroxysteroid dehydrogenase-like 2 (HSDL2), which regulates cancer progression, is involved in lipid metabolism. However, the role of HSDL2 in cholangiocarcinoma (CCA) and the mechanism by which it regulates CCA progression by modulating ferroptosis are unclear.
HSDL2 expression levels in CCA cells and tissues were determined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. The overall survival and disease-free survival of patients with high vs. low HSDL2 expression were evaluated using Kaplan-Meier curves. The proliferation, migration, and invasion of CCA cells were assessed using Cell Counting Kit-8, colony formation, 5-ethynyl-2'-deoxyuridine DNA synthesis, and transwell assays. The effect of p53 on tumor growth was explored using a xenograft mouse model. The expression of SLC7A11 in patients with CCA was analyzed using immunofluorescence. Ferroptosis levels were measured by flow cytometry, malondialdehyde assay, and glutathione assay. HSDL2-regulated signaling pathways were analyzed by transcriptome sequencing. The correlation between p53 and SLC7A11 was assessed using bioinformatics and luciferase reporter assays.
HSDL2 expression was lower in primary human CCA tissues than in matched adjacent non-tumorous bile duct tissues. HSDL2 downregulation was a significant risk factor for shorter overall survival and disease-free survival in patients with CCA. In addition, HSDL2 knockdown enhanced the proliferation, migration, and invasion of CCA cells. The transcriptome analysis of HSDL2 knockdown cells showed that differentially expressed genes were significantly enriched in the p53 signaling pathway, and HSDL2 downregulation increased SLC7A11 levels. These findings were consistent with the qRT-PCR and western blotting results. Other experiments showed that p53 expression modulated the effect of HSDL2 on CCA proliferation in vivo and in vitro and that p53 bound to the SLC7A11 promoter to inhibit ferroptosis.
HSDL2 knockdown promotes CCA progression by inhibiting ferroptosis through the p53/SLC7A11 axis. Thus, HSDL2 is a potential prognostic marker and therapeutic target for CCA.
Ma S
,Ma Y
,Qi F
,Lei J
,Chen F
,Sun W
,Wang D
,Zhou S
,Liu Z
,Lu Z
,Zhang D
... -
《World Journal of Surgical Oncology》
-
Regulation of the p53/SLC7A11/GPX4 Pathway by Gentamicin Induces Ferroptosis in HEI-OC1 Cells.
Gentamicin is a commonly used aminoglycoside antibiotic, with ototoxicity as a significant side effect. Ferroptosis, an iron-dependent form of cell death, has been implicated in a variety of disorders. Whether ferroptosis impacts gentamicin ototoxicity is not yet known. The current work used an in-vitro model to examine the influence of gentamicin-induced ferroptosis on cochlear hair cell damage and probable molecular biological pathways.
House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were treated with different concentrations of gentamicin for 24 hours, with or without ferrostatin-1 pretreatment, to observe gentamicin-induced ferroptosis. The role of p53/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling in gentamicin-induced ferroptosis was explored by pretreating cells with the p53 inhibitor pifithrin-α (PFT-α). We investigated the effect of gentamicin on cells by assessing cell viability. Cellular proteins were isolated and Western blots were performed to detect changes in the expression of p53, SLC7A11, and GPX4. Fluorescence staining was used to assess levels of reactive oxygen species. An enzymatic detection kit was used to detect glutathione, Fe, and malondialdehyde markers.
Gentamicin reduced cell viability, glutathione content, and SLC7A11 and GPX4 protein levels, and increased levels of p53 protein, reactive oxygen species, malondialdehyde, and Fe. These effects were largely blocked by pretreatment with ferrostatin-1. Pretreatment with the p53 inhibitor PFT-α prevented the gentamicin-induced reduction in SLC7A11 and GPX4, which alleviated several features of ferroptosis including glutathione depletion, iron overload, and lipid peroxidation build-up.
Gentamicin induces ferroptosis in the HEI-OC1 cell line, and the mechanism may be related to the p53/SLC7A11/GPX4 signaling pathway.
Li Y
,Xu H
,Shi J
,Li C
,Li M
,Zhang X
,Xue Q
,Qiu J
,Cui L
,Sun Y
,Song X
,Chen L
... -
《-》