Neutralization of CX3CL1 Attenuates TGF-β-Induced Fibroblast Differentiation Through NF-κB Activation and Mitochondrial Dysfunction in Airway Fibrosis.

来自 PUBMED

作者:

Cheng WHChang PLWu YCWang SAChen CLHsu FLNeoh MMLin LYYuliani FSLin CHChen BC

展开

摘要:

Severe asthma, characterized by inflammation and airway remodeling, involves fibroblast differentiation into myofibroblasts expressing α-SMA. This process leads to the production of fibronectin and connective tissue growth factor (CTGF), driven by factors such as transforming growth factor (TGF)-β. Furthermore, the persistent presence of myofibroblasts is associated with resistance to apoptosis and mitochondrial dysfunction. The chemokine (C-X3-C motif) ligand 1 (CX3CL1) plays a role in tissue fibrosis. However, it is currently unknown whether neutralization of CX3CL1 decreases TGF-β-induced fibroblast differentiation and mitochondrial dysfunction in normal human lung fibroblasts (NHLFs). CX3CL1/C-X3-C motif chemokine receptor 1 (CX3CR1), CX3CL1 was analyzed by immunofluorescence (IF) or immunohistochemical (IHC) staining of ovalbumin-challenged mice. CX3CL1 release was detected by ELISA. TGF-β-induced CTGF, fibronectin, and α-SMA expression were evaluated in NHLFs following neutralization of CX3CL1 (TP213) treatment for the indicated times by Western blotting or IF staining. Mitochondrion function was detected by a JC-1 assay and seahorse assay. Cell apoptosis was observed by a terminal uridine nick-end labeling (TUNEL) assay. An increase in CX3CL1 expression was observed in lung tissues from mice with ovalbumin-induced asthma by IF staining. CX3CR1 was increased in the subepithelial layer of the airway by IHC staining. Moreover, CX3CR1 small interfering (si)RNA downregulated TGF-β-induced CTGF and fibronectin expression in NHLFs. CX3CL1 induced CTGF and fibronectin expression in NHLFs. TGF-β-induced CX3CL1 secretion from NHLFs. Furthermore, TP213 decreased TGF-β-induced CTGF, fibronectin, and α-SMA expression in NHLFs. Mitochondrion-related differentially expressed genes (DEGs) were examined after CX3CL1 neutralization in TGF-β-treated NHLFs. TP213 alleviated TGF-β-induced mitochondrial dysfunction and apoptosis resistance in NHLFs. CX3CL1 induced p65, IκBα, and IKKα phosphorylation in a time-dependent manner. Furthermore, CX3CL1-induced fibronectin expression and JC-1 monomer were decreased by p65 siRNA. TP213 reduced TGF-β-induced p65 and α-SMA expression in NHLFs. These findings suggest that neutralizing CX3CL1 attenuates lung fibroblast activation and mitochondrial dysfunction. Understanding the impacts of CX3CL1 neutralization on fibroblast mitochondrial function could contribute to the development of therapeutic strategies for managing airway remodeling in severe asthma.

收起

展开

DOI:

10.1007/s00408-024-00701-6

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(30)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读