Prediction of Responsiveness to PD-L1/PD-1 Inhibitors Using miRNA Profiles Associated With PD-L1 Expression in Lung Adenocarcinoma and Squamous Cell Carcinoma.

来自 PUBMED

作者:

Koh YWHan JHHaam SLee HW

展开

摘要:

MicroRNAs (miRNAs) regulate programmed cell death ligand 1 (PD-L1) and play a crucial role in tumor immune response. However, the relationship between miRNA expression patterns and PD-L1 remains unclear in both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). We investigated PD-L1-related miRNAs that can predict treatment response in patients treated with PD-L1/PD-1 inhibitors. We selected miRNAs that were correlated with PD-L1 expression within the LUAD and LUSC datasets obtained from The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC). We validated whether the miRNA profile could be used to predict the prognosis of patients treated with PD-L1/PD-1 inhibitors. Based on four public datasets, we selected 66 and 23 miRNAs associated with PD-L1 expression in LUAD and LUSC, respectively. From the above miRNAs, we identified 5 miRNAs in LUSC and 1 miRNA in LUAD that could predict the response to PD-L1/PD-1 inhibitors in a validation set of patients treated with PD-L1/PD-1 inhibitors. In LUSC, the miRNA profile exhibited a high predictive capability for the response to PD-L1/PD-1 treatment [area under the curve (AUC)=0.963] and accurately predicted prognosis (p=0.031). In LUAD, the miRNA profile was relatively less predictive than in LUSC (AUC=0.691 and p=0.213). Additionally, we observed variations in the PD-L1-associated miRNA profiles, as well as in the associated pathways, between LUAD and LUSC. The PD-L1-associated miRNA profile may predict treatment response in LUSC patients treated with PD-L1/PD-1 inhibitors and help select the PD-L1/PD-1 inhibitor treatment group.

收起

展开

DOI:

10.21873/anticanres.17012

被引量:

1

年份:

2024

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(191)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读