High-throughput quantitative assessments of the chemical complementarity of celiac disease-related IGH CDR3s and a gliadin epitope.

来自 PUBMED

作者:

Jain RBressler MChobrutskiy AChobrutskiy BIBlanck G

展开

摘要:

The long-term value of efficient antigen discovery includes gaining insights into the variety of potential cancer neoantigens, effective vaccines lacking adverse effects, and adaptive immune receptor (IR) targets for blocking adaptive IR-antigen interactions in autoimmunity. While the preceding goals have been partially addressed via big data approaches to HLA (human leukocyte antigen)-epitope binding, there has been little such progress in the big data setting for adaptive IR-epitope binding. This delay in progress for the latter is likely due to, among other things, the much more complicated adaptive IR repertoire in an individual compared to individual HLA alleles. Thus, results described here represent the application of an algorithm for efficient assessment of immunoglobulin heavy chain complementarity determining region-3 (IGH CDR3)-gliadin epitope interactions, with a focus on epitopes known to be associated with an immune response in celiac disease. The hydrophobic, chemical complementarity between celiac case IGH CDR3s and known celiac epitopes was found to be greater in comparison to the hydrophobic, chemical complementarity between the same celiac case IGH CDR3s and a series of control epitopes. Thus, the approaches indicated here likely offer guidance for the development of conveniently applied algorithms for antigen verification and discovery.

收起

展开

DOI:

10.1093/intimm/dxae025

被引量:

0

年份:

2024

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(103)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读