Long non-coding RNA SOX2OT in tamoxifen-resistant breast cancer.

来自 PUBMED

作者:

Lee JKim EAKang JChae YSPark HYKang BLee SJLee IHPark JYPark NJJung JH

展开

摘要:

Hormone receptor (HR)-positive breast cancer can become aggressive after developing hormone-treatment resistance. This study elucidated the role of long non-coding RNA (lncRNA) SOX2OT in tamoxifen-resistant (TAMR) breast cancer and its potential interplay with the tumor microenvironment (TME). TAMR breast cancer cell lines TAMR-V and TAMR-H were compared with the luminal type A cell line (MCF-7). LncRNA expression was assessed via next-generation sequencing, RNA extraction, lncRNA profiling, and quantitative RT-qPCR. SOX2OT overexpression effects on cell proliferation, migration, and invasion were evaluated using various assays. SOX2OT was consistently downregulated in TAMR cell lines and TAMR breast cancer tissue. Overexpression of SOX2OT in TAMR cells increased cell proliferation and cell invasion. However, SOX2OT overexpression did not significantly alter SOX2 levels, suggesting an independent interaction within TAMR cells. Kaplan-Meier plot analysis revealed an inverse relationship between SOX2OT expression and prognosis in luminal A and B breast cancers. Our findings highlight the potential role of SOX2OT in TAMR breast cancer progression. The downregulation of SOX2OT in TAMR breast cancer indicates its involvement in resistance mechanisms. Further studies should explore the intricate interactions between SOX2OT, SOX2, and TME in breast cancer subtypes.

收起

展开

DOI:

10.1186/s12860-024-00510-y

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(114)

参考文献(43)

引证文献(0)

来源期刊

BMC Molecular and Cell Biology

影响因子:2.81

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读