Mutation analysis of BCR-ABL1 kinase domain in chronic myeloid leukemia patients with tyrosine kinase inhibitors resistance: a Malaysian cohort study.
Mutational analysis of BCR::ABL1 kinase domain (KD) is a crucial component of clinical decision algorithms for chronic myeloid leukemia (CML) patients with failure or warning responses to tyrosine kinase inhibitor (TKI) therapy. This study aimed to detect BCR::ABL1 KD mutations in CML patients with treatment resistance and assess the concordance between NGS (next generation sequencing) and Sanger sequencing (SS) in detecting these mutations.
In total, 12 different BCR::ABL1 KD mutations were identified by SS in 22.6% (19/84) of patients who were resistant to TKI treatment. Interestingly, NGS analysis of the same patient group revealed an additional four different BCR::ABL1 KD mutations in 27.4% (23/84) of patients. These mutations are M244V, A344V, E355A, and E459K with variant read frequency below 15%. No mutation was detected in 18 patients with optimal response to TKI therapy. Resistance to TKIs is associated with the acquisition of additional mutations in BCR::ABL1 KD after treatment with TKIs. Additionally, the use of NGS is advised for accurately determining the mutation status of BCR::ABL1 KD, particularly in cases where the allele frequency is low, and for identifying mutations across multiple exons simultaneously. Therefore, the utilization of NGS as a diagnostic platform for this test is very promising to guide therapeutic decision-making.
Seman ZA
,Ahid F
,Kamaluddin NR
,Sahid ENM
,Esa E
,Said SSM
,Azman N
,Mat WKDW
,Abdullah J
,Ali NA
,Khalid MKNM
,Yusoff YM
... -
《-》
Decitabine, venetoclax, and ponatinib for advanced phase chronic myeloid leukaemia and Philadelphia chromosome-positive acute myeloid leukaemia: a single-arm, single-centre phase 2 trial.
Advanced phase Philadelphia chromosome-positive myeloid disease-consisting of chronic myeloid leukaemia in the myeloid blast phase and in the accelerated phase, and Philadelphia chromosome-positive acute myeloid leukaemia-is associated with poor outcomes. Although previous studies have suggested the benefit of chemotherapy and BCR::ABL1 tyrosine kinase inhibitor combinations, the optimal regimen is uncertain and prospective studies for this rare group of diseases are scant. Preclinical and retrospective clinical data suggest possible synergy between the BCL-2 inhibitor venetoclax and BCR::ABL1 tyrosine kinase inhibitors. We therefore aimed to design a study to evaluate the safety and activity of a novel combination of decitabine, venetoclax, and the third-generation BCR::ABL1 tyrosine kinase inhibitor ponatinib in advanced phase Philadelphia chromosome-positive myeloid diseases.
For this phase 2 study, patients aged 18 years or older with previously untreated or relapsed or refractory myeloid chronic myeloid leukaemia-blast phase, chronic myeloid leukaemia-accelerated phase, or advanced phase Philadelphia chromosome-positive acute myeloid leukaemia, and an Eastern Cooperative Oncology Group performance status of 0-3 were eligible. Patients were eligible regardless of the number of previous lines of therapy received or previous receipt of ponatinib. Cycle 1 (induction) consisted of a 7-day lead-in of ponatinib 45 mg orally daily (days 1-7), followed by combination therapy with decitabine 20 mg/m2 intravenously on days 8-12, venetoclax orally daily with ramp-up to a maximum dose of 400 mg on days 8-28, and ponatinib 45 mg orally daily on days 8-28. Cycles 2-24 consisted of decitabine 20 mg/m2 intravenously on days 1-5, venetoclax orally 400 mg on days 1-21, and ponatinib orally daily on days 1-28. Response-based dosing of ponatinib was implemented in consolidation cycles, with reduction to 30 mg daily in patients who reached complete remission or complete remission with an incomplete haematological recovery and a reduction to 15 mg daily in patients with undetectable BCR::ABL1 transcripts. The primary endpoint was the composite rate of complete remission or complete remission with incomplete haematological recovery in the intention-to-treat population. Safety was assessed in the intention-to-treat population. This trial was registered with ClinicalTrials.gov (NCT04188405) and is still ongoing.
Between July 12, 2020, and July 8, 2023, 20 patients were treated (14 with chronic myeloid leukaemia-blast phase, four with chronic myeloid leukaemia-accelerated phase, and two with advanced phase Philadelphia chromosome-positive acute myeloid leukaemia). The median age was 43 years (IQR 32-58); 13 (65%) patients were male and seven (35%) were female; and 12 (60%) were White, three (15%) were Hispanic, four (20%) were Black, and one (5%) was Asian. 12 (60%) patients had received 2 or more previous BCR::ABL1 tyrosine kinase inhibitors, and 14 (70%) patients had at least one high-risk additional chromosomal abnormality or complex karyotype. The median duration of follow-up was 21·2 months (IQR 14·1-24·2). The complete remission or complete remission with an incomplete haematological recovery rate was 50% (10 of 20 patients); complete remission in one [5%] patient and complete remission with incomplete haematological recovery in nine [45%]). An additional six (30%) patients had a morphologic leukaemia-free state. The most common grade 3-4 non-haematological adverse events were febrile neutropenia in eight (40%) patients, infection in six (30%), and alanine or aspartate transaminase elevation in five (25%). Eight (40%) patients had at least one cardiovascular event of any grade. There were three on-study deaths, none of which was considered related to the study treatment and all from infections in the setting of refractory leukaemia.
The combination of decitabine, venetoclax, and ponatinib is safe and shows promising activity in patients with advanced phase chronic myeloid leukaemia, including those with multiple previous therapies or high-risk disease features. Further studies evaluating chemotherapy and venetoclax-based combination strategies using newer-generation BCR::ABL1 tyrosine kinase inhibitors are warranted.
Takeda Oncology, the National Institutes of Health, and the National Cancer Institute Cancer Center.
Short NJ
,Nguyen D
,Jabbour E
,Senapati J
,Zeng Z
,Issa GC
,Abbas H
,Nasnas C
,Qiao W
,Huang X
,Borthakur G
,Chien K
,Haddad FG
,Pemmaraju N
,Karrar OS
,Nguyen D
,Konopleva M
,Kantarjian H
,Ravandi F
... -
《Lancet Haematology》
Occurrence of Existing BCR-ABL Baseline Mutations and Associated Haplotype (NmR) Among CML Patients with Diverse IM Response: A Hospital-based Study from North-East India.
Highly polymorphic BCR-ABL kinase domains have been reported to harbor more than a hundred mutations, and among these, 40-60% have been identified as influencers of imatinib mesylate (IM) resistance. The emergence of IM resistance poses a significant challenge in the management of Chronic Myeloid Leukemia (CML). M351T (rs121913457), E255K (rs387906517), and Y253H (rs121913461) are of particular clinical significance due to their association with high-level imatinib resistance. This study was conducted to investigate the potential role of three significant SNPs in CML progression due to IM resistance. During the study period from 2018 to 2022 (48 months), the blood samples from 219 Reverse transcriptase-PCR-confirmed CML patients following RNA extraction and cDNA preparation were subjected to M351T, E255K, and Y253H mutation analysis by PCR-RFLP. After agarose gel visualization, the samples were subjected to Sanger sequencing to confirm the nucleotide change at the polymorphic loci. The wild-type genotype of all three ABL1 SNPs under investigation exhibits a significant reduction in frequency among IM non-responders compared to the responder group. The CGT haplotype frequency exhibits a significant difference between IM responder (4.2%) and non-responder (11.8%) (p = 0.002 < 0.05). Further, CGC haplotype was observed solely among the imatinib non-responder patients with a frequency percentage of 3.3% (p = 0.004), whereas the said genotype was absent among the responder group. A reduced overall survival rate was observed with deviation from wild-type genotype (M351T loci (T > C) with 1.217 times, E255K (G > A) with 1.485 and Y253H (T > C) with 1.399 times increase in hazard ratio) thereby enhancing mortality risk due to disease progression. The significant increase in the frequency of M351T, E255K, and Y253H loci among the IM non-responder group indicated their probable association with the development of IM resistance among CML patients. A haplotype frequency distribution pattern analysis of ABL1 loci further identified the CGC haplotype as an independent predictor for IM resistance. As such the study highlights the importance of patient characteristics, genotype distribution, and haplotype frequency distribution in predicting the response to IM treatment and clinical outcomes of CML patients.
Hazarika G
,Kalita MJ
,Das PP
,Kalita S
,Dutta K
,Lahkar L
,Rajkonwar A
,Idris MG
,Khamo V
,Kusre G
,Medhi S
... -
《-》
BRD4 degradation blocks expression of MYC and multiple forms of stem cell resistance in Ph(+) chronic myeloid leukemia.
In most patients with chronic myeloid leukemia (CML) clonal cells can be kept under control by BCR::ABL1 tyrosine kinase inhibitors (TKI). However, overt resistance or intolerance against these TKI may occur. We identified the epigenetic reader BRD4 and its downstream-effector MYC as growth regulators and therapeutic targets in CML cells. BRD4 and MYC were found to be expressed in primary CML cells, CD34+ /CD38- leukemic stem cells (LSC), and in the CML cell lines KU812, K562, KCL22, and KCL22T315I . The BRD4-targeting drug JQ1 was found to suppress proliferation in KU812 cells and primary leukemic cells in the majority of patients with chronic phase CML. In the blast phase of CML, JQ1 was less effective. However, the BRD4 degrader dBET6 was found to block proliferation and/or survival of primary CML cells in all patients tested, including blast phase CML and CML cells exhibiting the T315I variant of BCR::ABL1. Moreover, dBET6 was found to block MYC expression and to synergize with BCR::ABL1 TKI in inhibiting the proliferation in the JQ1-resistant cell line K562. Furthermore, BRD4 degradation was found to overcome osteoblast-induced TKI resistance of CML LSC in a co-culture system and to block interferon-gamma-induced upregulation of the checkpoint antigen PD-L1 in LSC. Finally, dBET6 was found to suppress the in vitro survival of CML LSC and their engraftment in NSG mice. Together, targeting of BRD4 and MYC through BET degradation sensitizes CML cells against BCR::ABL1 TKI and is a potent approach to overcome multiple forms of drug resistance in CML LSC.
Peter B
,Eisenwort G
,Sadovnik I
,Bauer K
,Willmann M
,Rülicke T
,Berger D
,Stefanzl G
,Greiner G
,Hoermann G
,Keller A
,Wolf D
,Čulen M
,Winter GE
,Hoffmann T
,Schiefer AI
,Sperr WR
,Zuber J
,Mayer J
,Valent P
... -
《-》