Effectiveness of AI-powered Chatbots in responding to orthopaedic postgraduate exam questions-an observational study.

来自 PUBMED

作者:

Vaishya RIyengar KPPatralekh MKBotchu RShirodkar KJain VKVaish AScarlat MM

展开

摘要:

This study analyses the performance and proficiency of the three Artificial Intelligence (AI) generative chatbots (ChatGPT-3.5, ChatGPT-4.0, Bard Google AI®) and in answering the Multiple Choice Questions (MCQs) of postgraduate (PG) level orthopaedic qualifying examinations. A series of 120 mock Single Best Answer' (SBA) MCQs with four possible options named A, B, C and D as answers on various musculoskeletal (MSK) conditions covering Trauma and Orthopaedic curricula were compiled. A standardised text prompt was used to generate and feed ChatGPT (both 3.5 and 4.0 versions) and Google Bard programs, which were then statistically analysed. Significant differences were found between responses from Chat GPT 3.5 with Chat GPT 4.0 (Chi square = 27.2, P < 0.001) and on comparing both Chat GPT 3.5 (Chi square = 63.852, P < 0.001) with Chat GPT 4.0 (Chi square = 44.246, P < 0.001) with. Bard Google AI® had 100% efficiency and was significantly more efficient than both Chat GPT 3.5 with Chat GPT 4.0 (p < 0.0001). The results demonstrate the variable potential of the different AI generative chatbots (Chat GPT 3.5, Chat GPT 4.0 and Bard Google) in their ability to answer the MCQ of PG-level orthopaedic qualifying examinations. Bard Google AI® has shown superior performance than both ChatGPT versions, underlining the potential of such large language processing models in processing and applying orthopaedic subspecialty knowledge at a PG level.

收起

展开

DOI:

10.1007/s00264-024-06182-9

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(239)

参考文献(19)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读