An artificial intelligence model for detecting pathological lymph node metastasis in prostate cancer using whole slide images: a retrospective, multicentre, diagnostic study.

来自 PUBMED

作者:

Wu SWang YHong GLuo YLin ZShen RZeng HXu AWu PXiao MLi XRao PYang QFeng ZHe QJiang FXie YLiao CHuang XChen RLin T

展开

摘要:

The pathological examination of lymph node metastasis (LNM) is crucial for treating prostate cancer (PCa). However, the limitations with naked-eye detection and pathologist workload contribute to a high missed-diagnosis rate for nodal micrometastasis. We aimed to develop an artificial intelligence (AI)-based, time-efficient, and high-precision PCa LNM detector (ProCaLNMD) and evaluate its clinical application value. In this multicentre, retrospective, diagnostic study, consecutive patients with PCa who underwent radical prostatectomy and pelvic lymph node dissection at five centres between Sep 2, 2013 and Apr 28, 2023 were included, and histopathological slides of resected lymph nodes were collected and digitised as whole-slide images for model development and validation. ProCaLNMD was trained at a dataset from a single centre (the Sun Yat-sen Memorial Hospital of Sun Yat-sen University [SYSMH]), and externally validated in the other four centres. A bladder cancer dataset from SYSMH was used to further validate ProCaLNMD, and an additional validation (human-AI comparison and collaboration study) containing consecutive patients with PCa from SYSMH was implemented to evaluate the application value of integrating ProCaLNMD into the clinical workflow. The primary endpoint was the area under the receiver operating characteristic curve (AUROC) of ProCaLNMD. In addition, the performance measures for pathologists with ProCaLNMD assistance was also assessed. In total, 8225 slides from 1297 patients with PCa were collected and digitised. Overall, 8158 slides (18,761 lymph nodes) from 1297 patients with PCa (median age 68 years [interquartile range 64-73]; 331 [26%] with LNM) were used to train and validate ProCaLNMD. The AUROC of ProCaLNMD ranged from 0.975 (95% confidence interval 0.953-0.998) to 0.992 (0.982-1.000) in the training and validation datasets, with sensitivities > 0.955 and specificities > 0.921. ProCaLNMD also demonstrated an AUROC of 0.979 in the cross-cancer dataset. ProCaLNMD use triggered true reclassification in 43 (4.3%) slides in which micrometastatic tumour regions were initially missed by pathologists, thereby correcting 28 (8.5%) missed-diagnosed cases of previous routine pathological reports. In the human-AI comparison and collaboration study, the sensitivity of ProCaLNMD (0.983 [0.908-1.000]) surpassed that of two junior pathologists (0.862 [0.746-0.939], P = 0.023; 0.879 [0.767-0.950], P = 0.041) by 10-12% and showed no difference to that of two senior pathologists (both 0.983 [0.908-1.000], both P > 0.99). Furthermore, ProCaLNMD significantly boosted the diagnostic sensitivity of two junior pathologists (both P = 0.041) to the level of senior pathologists (both P > 0.99), and substantially reduced the four pathologists' slide reviewing time (-31%, P < 0.0001; -34%, P < 0.0001; -29%, P < 0.0001; and -27%, P = 0.00031). ProCaLNMD demonstrated high diagnostic capabilities for identifying LNM in prostate cancer, reducing the likelihood of missed diagnoses by pathologists and decreasing the slide reviewing time, highlighting its potential for clinical application. National Natural Science Foundation of China, the Science and Technology Planning Project of Guangdong Province, the National Key Research and Development Programme of China, the Guangdong Provincial Clinical Research Centre for Urological Diseases, and the Science and Technology Projects in Guangzhou.

收起

展开

DOI:

10.1016/j.eclinm.2024.102580

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(156)

参考文献(26)

引证文献(0)

来源期刊

EClinicalMedicine

影响因子:17.016

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读