Activation of BMP4/SMAD pathway by HIF-1α in hypoxic environment promotes osteogenic differentiation of BMSCs and leads to ectopic bone formation.

来自 PUBMED

作者:

Chen CSong CLiu BWang YJia JPang KWang YWang P

展开

摘要:

Heterotopic ossification (HO), also known as ossifying myositis, is a condition that produces abnormal bone and cartilage tissue in the soft tissues. Hypoxia inducible factor lα (HIF-lα) regulates the expression of various genes, which is closely related to the promotion of bone formation, and Drosophila mothers against decapentaplegic protein (SMAD) mediates the signal transduction in the Bone morphogenetic protein (BMP) signaling pathway, which affects the function of osteoblasts and osteoclasts, and thus plays a key role in the regulation of bone remodeling. We aimed to investigate the mechanism by which HIF-1α induces osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in a hypoxic environment. A cellular hypoxia model was constructed to verify the expression of HIF-1α, while alizarin red staining was performed to observe the osteogenic differentiation ability of bone marrow mesenchymal stem cells (BMSCs). Alizarin red staining was used to analyze the late mineralization ability of the cells. Western blot analysis was performed to analyze the expression levels of osteogenesis-related factors OCN, OPN proteins as well as the pathway proteins BMP4, p-Smad1/5/8, and Smad1. We also constructed a rat model of ectopic bone formation, observed ectopic ossification by X-ray, and verified the success of the rat model by ELISA of HIF-1α. HE staining was used to observe the matrix and trabecular structure of bone, and Masson staining was used to observe the collagen and trabecular structure of bone. Immunohistochemistry analyzed the expression of OCN and OPN in ectopic bone tissues, and WB analyzed the expression of pathway proteins BMP4, p-Smad1/5/8 and Smad1 in ectopic bone tissues to verify the signaling pathway of ectopic bone formation. Our results indicate that hypoxic environment upregulates HIF-1a expression and activates BMP4/SMAD signaling pathway. This led to an increase in ALP content and enhanced expression of the osteogenesis-related factors OCN and OPN, resulting in enhanced osteogenic differentiation of BMSCs. The results of our in vivo experiments showed that rats inoculated with BMSCs overexpressing HIF-1α showed bony structures in tendon tissues, enhanced expression of the bone signaling pathways BMP4 and p-Smad1/5/8, and enhanced expression levels of the osteogenic-related factors OCN and OPN, resulting in the formation of ectopic bone. These data further suggest a novel mechanistic view that hypoxic bone marrow BMSCs activate the BMP4/SMAD pathway by up-regulating the expression level of HIF-1α, thereby promoting the secretion of osteogenic factors leading to ectopic bone formation.

收起

展开

DOI:

10.1016/j.tice.2024.102376

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(193)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读