T-Cell Mediated Response after Primary and Booster SARS-CoV-2 Messenger RNA Vaccination in Nursing Home Residents.
Nursing home (NH) residents have been significantly affected by the coronavirus disease 2019 (COVID-19) pandemic. Studies addressing the immune responses induced by COVID-19 vaccines in NH residents have documented a good postvaccination antibody response and the beneficial effect of a third booster vaccine dose. Less is known about vaccine-induced activation of cell-mediated immune response in frail older individuals in the long term. The aim of the present study is to monitor messenger RNA SARS-CoV-2 vaccine-induced T-cell responses in a sample of Italian NH residents who received primary vaccine series and a third booster dose and to assess the interaction between T-cell responses and humoral immunity.
Longitudinal cohort study.
Thirty-four residents vaccinated with BNT162b2 messenger RNA SARS-CoV-2 vaccine between February and April 2021 and who received a third BNT162b2 booster dose between October and November 2021 were assessed for vaccine-induced immunity 6 (prebooster) and 12 (postbooster) months after the first BNT162b2 vaccine dose.
Pre- and postbooster cell-mediated immunity was assessed by intracellular cytokine staining of peripheral blood mononuclear cells stimulated in vitro with peptides covering the immunodominant sequence of SARS-CoV-2 spike protein. The simultaneous production of interferon-γ, tumor necrosis factor-α, and interleukin-2 was measured. Humoral immunity was assessed in parallel by measuring serum concentration of antitrimeric spike IgG antibodies.
Before the booster vaccination, 31 out of 34 NH residents had a positive cell-mediated immunity response to spike. Postbooster, 28 out of 34 had a positive response. Residents without a previous history of SARS-CoV-2 infection, who had a lower response prior the booster administration, showed a greater increase of T-cell responses after the vaccine booster dose. Humoral and cell-mediated immunity were, in part, correlated but only before booster vaccine administration.
The administration of the booster vaccine dose restored spike-specific T-cell responses in SARS-CoV-2 naïve residents who responded poorly to the first immunization, while a previous SARS-CoV-2 infection had an impact on the magnitude of vaccine-induced cell-mediated immunity at earlier time points. Our findings imply the need for a continuous monitoring of the immune status of frail NH residents to adapt future SARS-CoV-2 vaccination strategies.
Schiavoni I
,Palmieri A
,Olivetta E
,Leone P
,Di Lonardo A
,Mazzoli A
,Cafariello C
,Malara A
,Palamara AT
,Incalzi RA
,Onder G
,Stefanelli P
,Fedele G
,GeroCovid Vax CMI Study Group
... -
《-》
Vaccine effectiveness of the first dose of ChAdOx1 nCoV-19 and BNT162b2 against SARS-CoV-2 infection in residents of long-term care facilities in England (VIVALDI): a prospective cohort study.
The effectiveness of SARS-CoV-2 vaccines in older adults living in long-term care facilities is uncertain. We investigated the protective effect of the first dose of the Oxford-AstraZeneca non-replicating viral-vectored vaccine (ChAdOx1 nCoV-19; AZD1222) and the Pfizer-BioNTech mRNA-based vaccine (BNT162b2) in residents of long-term care facilities in terms of PCR-confirmed SARS-CoV-2 infection over time since vaccination.
The VIVALDI study is a prospective cohort study that commenced recruitment on June 11, 2020, to investigate SARS-CoV-2 transmission, infection outcomes, and immunity in residents and staff in long-term care facilities in England that provide residential or nursing care for adults aged 65 years and older. In this cohort study, we included long-term care facility residents undergoing routine asymptomatic SARS-CoV-2 testing between Dec 8, 2020 (the date the vaccine was first deployed in a long-term care facility), and March 15, 2021, using national testing data linked within the COVID-19 Datastore. Using Cox proportional hazards regression, we estimated the relative hazard of PCR-positive infection at 0-6 days, 7-13 days, 14-20 days, 21-27 days, 28-34 days, 35-48 days, and 49 days and beyond after vaccination, comparing unvaccinated and vaccinated person-time from the same cohort of residents, adjusting for age, sex, previous infection, local SARS-CoV-2 incidence, long-term care facility bed capacity, and clustering by long-term care facility. We also compared mean PCR cycle threshold (Ct) values for positive swabs obtained before and after vaccination. The study is registered with ISRCTN, number 14447421.
10 412 care home residents aged 65 years and older from 310 LTCFs were included in this analysis. The median participant age was 86 years (IQR 80-91), 7247 (69·6%) of 10 412 residents were female, and 1155 residents (11·1%) had evidence of previous SARS-CoV-2 infection. 9160 (88·0%) residents received at least one vaccine dose, of whom 6138 (67·0%) received ChAdOx1 and 3022 (33·0%) received BNT162b2. Between Dec 8, 2020, and March 15, 2021, there were 36 352 PCR results in 670 628 person-days, and 1335 PCR-positive infections (713 in unvaccinated residents and 612 in vaccinated residents) were included. Adjusted hazard ratios (HRs) for PCR-positive infection relative to unvaccinated residents declined from 28 days after the first vaccine dose to 0·44 (95% CI 0·24-0·81) at 28-34 days and 0·38 (0·19-0·77) at 35-48 days. Similar effect sizes were seen for ChAdOx1 (adjusted HR 0·32, 95% CI 0·15-0·66) and BNT162b2 (0·35, 0·17-0·71) vaccines at 35-48 days. Mean PCR Ct values were higher for infections that occurred at least 28 days after vaccination than for those occurring before vaccination (31·3 [SD 8·7] in 107 PCR-positive tests vs 26·6 [6·6] in 552 PCR-positive tests; p<0·0001).
Single-dose vaccination with BNT162b2 and ChAdOx1 vaccines provides substantial protection against infection in older adults from 4-7 weeks after vaccination and might reduce SARS-CoV-2 transmission. However, the risk of infection is not eliminated, highlighting the ongoing need for non-pharmaceutical interventions to prevent transmission in long-term care facilities.
UK Government Department of Health and Social Care.
Shrotri M
,Krutikov M
,Palmer T
,Giddings R
,Azmi B
,Subbarao S
,Fuller C
,Irwin-Singer A
,Davies D
,Tut G
,Lopez Bernal J
,Moss P
,Hayward A
,Copas A
,Shallcross L
... -
《-》