Predicting the impacts of urban development on urban thermal environment using machine learning algorithms in Nanjing, China.

来自 PUBMED

作者:

Zhang MTan SLiang JZhang CChen E

展开

摘要:

The urban thermal environment undergoes significant influences from changes in land use/land cover (LULC). This article uses CA-ANN and ANN algorithms to forecast LULC and changes in the urban thermal environment in Nanjing for the years 2030 and 2040. It investigates the interplay between LULC changes, land surface temperature (LST), and the urban thermal field variance index (UTFVI). The findings reveal that urban land exhibited a significant expansion trend from 2000 to 2019, reaching 1083.43 km2 in 2019. The forecast indicates that urban land may increase by 8.79% and 10.92% by 2030 and 2040, respectively. Conversely, vegetation and bare land may decrease. The LST is likely to continue to rise, accompanied by a significant expansion of the high temperature range and a contraction of the low temperature range. By 2030 and 2040, the area with LST<20 °C is likely to decrease by 2.17% and 3.19%, while the area with LST>30 °C is likely to expand by 5.68% and 8.08%, respectively. The UTFVI area of urban land may decrease at none and middle levels but may notably expand at stronger and strongest levels. The areas with UTFVI at none, weak, and middle levels show a declining trend, while the increase in UTFVI at the strong level may exceed 46.29% and the strongest level of UTFVI may continue to expand. This study offers new insights into urban sustainable development and thermal environment governance.

收起

展开

DOI:

10.1016/j.jenvman.2024.120560

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(112)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读