Combining a wireless radar sleep monitoring device with deep machine learning techniques to assess obstructive sleep apnea severity.

来自 PUBMED

作者:

Lin SYTsai CYMajumdar AHo YHHuang YWKao CKYeh SMHsu WHKuan YCLee KYFeng PHTseng CHChen KYKang JHLee HCWu CJLiu WT

展开

摘要:

The gold standard for diagnosing obstructive sleep apnea (OSA) is polysomnography (PSG). However, PSG is a time-consuming method with clinical limitations. This study aimed to create a wireless radar framework to screen the likelihood of 2 levels of OSA severity (ie, moderate-to-severe and severe OSA) in accordance with clinical practice standards. We conducted a prospective, simultaneous study using a wireless radar system and PSG in a Northern Taiwan sleep center, involving 196 patients. The wireless radar sleep monitor, incorporating hybrid models such as deep neural decision trees, estimated the respiratory disturbance index relative to the total sleep time established by PSG (RDIPSG_TST), by analyzing continuous-wave signals indicative of breathing patterns. Analyses were performed to examine the correlation and agreement between the RDIPSG_TST and apnea-hypopnea index, results obtained through PSG. Cut-off thresholds for RDIPSG_TST were determined using Youden's index, and multiclass classification was performed, after which the results were compared. A strong correlation (ρ = 0.91) and agreement (average difference of 0.59 events/h) between apnea-hypopnea index and RDIPSG_TST were identified. In terms of the agreement between the 2 devices, the average difference between PSG-based apnea-hypopnea index and radar-based RDIPSG_TST was 0.59 events/h, and 187 out of 196 cases (95.41%) fell within the 95% confidence interval of differences. A moderate-to-severe OSA model achieved an accuracy of 90.3% (cut-off threshold for RDIPSG_TST: 19.2 events/h). A severe OSA model achieved an accuracy of 92.4% (cut-off threshold for RDIPSG_TST: 28.86 events/h). The mean accuracy of multiclass classification performance using these cut-off thresholds was 83.7%. The wireless-radar-based sleep monitoring device, with cut-off thresholds, can provide rapid OSA screening with acceptable accuracy and also alleviate the burden on PSG capacity. However, to independently apply this framework, the function of determining the radar-based total sleep time requires further optimizations and verification in future work. Lin S-Y, Tsai C-Y, Majumdar A, et al. Combining a wireless radar sleep monitoring device with deep machine learning techniques to assess obstructive sleep apnea severity. J Clin Sleep Med. 2024;20(8):1267-1277.

收起

展开

DOI:

10.5664/jcsm.11136

被引量:

0

年份:

2024

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(225)

参考文献(35)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读