

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(78)
引证文献(1)
-
Microwave coagulation for liver metastases.
Storman D ,Swierz MJ ,Mitus JW ,Pedziwiatr M ,Liang N ,Wolff R ,Bala MM ... - 《Cochrane Database of Systematic Reviews》
被引量: 1 发表:1970年 -
Tamoxifen for adults with hepatocellular carcinoma.
Hepatocellular carcinoma is the most common type of liver cancer, accounting for 70% to 85% of individuals with primary liver cancer. Tamoxifen has been evaluated in randomised clinical trials in people with hepatocellular cancer. The reported results have been inconsistent. To evaluate the benefits and harms of tamoxifen or tamoxifen plus any other anticancer drugs compared with no intervention, placebo, any type of standard care, or alternative treatment in adults with hepatocellular carcinoma, irrespective of sex, administered dose, type of formulation, and duration of treatment. We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and major trials registries, and handsearched reference lists up to 26 March 2024. Parallel-group randomised clinical trials including adults (aged 18 years and above) diagnosed with advanced or unresectable hepatocellular carcinoma. Had we found cross-over trials, we would have included only the first trial phase. We did not consider data from quasi-randomised trials for analysis. Our critical outcomes were all-cause mortality, serious adverse events, and health-related quality of life. Our important outcomes were disease progression, and adverse events considered non-serious. We assessed risk of bias using the RoB 2 tool. We used standard Cochrane methods and Review Manager. We meta-analysed the outcome data at the longest follow-up. We presented the results of dichotomous outcomes as risk ratios (RR) and continuous data as mean difference (MD), with 95% confidence intervals (CI) using the random-effects model. We summarised the certainty of evidence using GRADE. We included 10 trials that randomised 1715 participants with advanced, unresectable, or terminal stage hepatocellular carcinoma. Six were single-centre trials conducted in Hong Kong, Italy, and Spain, while three were conducted as multicentre trials in single countries (France, Italy, and Spain), and one trial was conducted in nine countries in the Asia-Pacific region (Australia, Hong Kong, Indonesia, Malaysia, Myanmar, New Zealand, Singapore, South Korea, and Thailand). The experimental intervention was tamoxifen in all trials. The control interventions were no intervention (three trials), placebo (six trials), and symptomatic treatment (one trial). Co-interventions were best supportive care (three trials) and standard care (one trial). The remaining six trials did not provide this information. The number of participants in the trials ranged from 22 to 496 (median 99), mean age was 63.7 (standard deviation 4.18) years, and mean proportion of men was 74.7% (standard deviation 42%). Follow-up was three months to five years. Ten trials evaluated oral tamoxifen at five different dosages (ranging from 20 mg per day to 120 mg per day). All trials investigated one or more of our outcomes. We performed meta-analyses when at least two trials assessed similar types of tamoxifen versus similar control interventions. Eight trials evaluated all-cause mortality at varied follow-up points. Tamoxifen versus the control interventions (i.e. no treatment, placebo, and symptomatic treatment) results in little to no difference in mortality between one and five years (RR 0.99, 95% CI 0.92 to 1.06; 8 trials, 1364 participants; low-certainty evidence). In total, 488/682 (71.5%) participants died in the tamoxifen groups versus 487/682 (71.4%) in the control groups. The separate analysis results for one, between two and three, and five years were comparable to the analysis result for all follow-up periods taken together. The evidence is very uncertain about the effect of tamoxifen versus no treatment on serious adverse events at one-year follow-up (RR 0.44, 95% CI 0.19 to 1.06; 1 trial, 36 participants; very low-certainty evidence). A total of 5/20 (25.0%) participants in the tamoxifen group versus 9/16 (56.3%) participants in the control group experienced serious adverse events. One trial measured health-related quality of life at baseline and at nine months' follow-up, using the Spitzer Quality of Life Index. The evidence is very uncertain about the effect of tamoxifen versus no treatment on health-related quality of life (MD 0.03, 95% CI -0.45 to 0.51; 1 trial, 420 participants; very low-certainty evidence). A second trial found no appreciable difference in global health-related quality of life scores. No further data were provided. Tamoxifen versus control interventions (i.e. no treatment, placebo, or symptomatic treatment) results in little to no difference in disease progression between one and five years' follow-up (RR 1.02, 95% CI 0.91 to 1.14; 4 trials, 720 participants; low-certainty evidence). A total of 191/358 (53.3%) participants in the tamoxifen group versus 198/362 (54.7%) participants in the control group had progression of hepatocellular carcinoma. Tamoxifen versus control interventions (i.e. no treatment or placebo) may have little to no effect on adverse events considered non-serious during treatment, but the evidence is very uncertain (RR 1.17, 95% CI 0.45 to 3.06; 4 trials, 462 participants; very low-certainty evidence). A total of 10/265 (3.8%) participants in the tamoxifen group versus 6/197 (3.0%) participants in the control group had adverse events considered non-serious. We identified no trials with participants diagnosed with early stages of hepatocellular carcinoma. We identified no ongoing trials. Based on the low- and very low-certainty evidence, the effects of tamoxifen on all-cause mortality, disease progression, serious adverse events, health-related quality of life, and adverse events considered non-serious in adults with advanced, unresectable, or terminal stage hepatocellular carcinoma when compared with no intervention, placebo, or symptomatic treatment could not be established. Our findings are mostly based on trials at high risk of bias with insufficient power (fewer than 100 participants), and a lack of trial data on clinically important outcomes. Therefore, firm conclusions cannot be drawn. Trials comparing tamoxifen administered with any other anticancer drug versus standard care, usual care, or alternative treatment as control interventions were lacking. Evidence on the benefits and harms of tamoxifen in participants at the early stages of hepatocellular carcinoma was also lacking. This Cochrane review had no dedicated funding. Protocol available via DOI: 10.1002/14651858.CD014869.
Naing C ,Ni H ,Aung HH 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Antibiotics for treatment of leptospirosis.
Leptospirosis is a disease transmitted from animals to humans through water, soil, or food contaminated with the urine of infected animals, caused by pathogenic Leptospira species. Antibiotics are commonly prescribed for the management of leptospirosis. Despite the widespread use of antibiotic treatment for leptospirosis, there seems to be insufficient evidence to determine its effectiveness or to recommend antibiotic use as a standard practice. This updated systematic review evaluated the available evidence regarding the use of antibiotics in treating leptospirosis, building upon a previously published Cochrane review. To evaluate the benefits and harms of antibiotics versus placebo, no intervention, or another antibiotic for the treatment of people with leptospirosis. We identified randomised clinical trials following standard Cochrane procedures. The date of the last search was 27 March 2023. We searched for randomised clinical trials of various designs that examined the use of antibiotics for treating leptospirosis. We did not impose any restrictions based on the age, sex, occupation, or comorbidities of the participants involved in the trials. Our search encompassed trials that evaluated antibiotics, regardless of the method of administration, dosage, and schedule, and compared them with placebo or no intervention, or compared different antibiotics. We included trials regardless of the outcomes reported. During the preparation of this review, we adhered to the Cochrane methodology and used Review Manager. The primary outcomes were all-cause mortality and serious adverse events (nosocomial infection). Our secondary outcomes were quality of life, proportion of people with adverse events considered non-serious, and days of hospitalisation. To assess the risk of bias of the included trials, we used the RoB 2 tool, and for evaluating the certainty of evidence we used GRADEpro GDT software. We presented dichotomous outcomes as risk ratios (RR) and continuous outcomes as mean differences (MD), both accompanied by their corresponding 95% confidence intervals (CI). We used the random-effects model for all our main analyses and the fixed-effect model for sensitivity analyses. For our primary outcome analyses, we included trial data from the longest follow-up period. We identified nine randomised clinical trials comprising 1019 participants. Seven trials compared two intervention groups and two trials compared three intervention groups. Amongst the trials comparing antibiotics versus placebos, four trials assessed penicillin and one trial assessed doxycycline. In the trials comparing different antibiotics, one trial evaluated doxycycline versus azithromycin, one trial assessed penicillin versus doxycycline versus cefotaxime, and one trial evaluated ceftriaxone versus penicillin. One trial assessed penicillin with chloramphenicol and no intervention. Apart from two trials that recruited military personnel stationed in endemic areas or military personnel returning from training courses in endemic areas, the remaining trials recruited people from the general population presenting to the hospital with fever in an endemic area. The participants' ages in the included trials was 13 to 92 years. The treatment duration was seven days for penicillin, doxycycline, and cephalosporins; five days for chloramphenicol; and three days for azithromycin. The follow-up durations varied across trials, with three trials not specifying their follow-up periods. Three trials were excluded from quantitative synthesis; one reported zero events for a prespecified outcome, and two did not provide data for any prespecified outcomes. Antibiotics versus placebo or no intervention The evidence is very uncertain about the effect of penicillin versus placebo on all-cause mortality (RR 1.57, 95% CI 0.65 to 3.79; I2 = 8%; 3 trials, 367 participants; very low-certainty evidence). The evidence is very uncertain about the effect of penicillin or chloramphenicol versus placebo on adverse events considered non-serious (RR 1.05, 95% CI 0.35 to 3.17; I2 = 0%; 2 trials, 162 participants; very low-certainty evidence). None of the included trials assessed serious adverse events. Antibiotics versus another antibiotic The evidence is very uncertain about the effect of penicillin versus cephalosporin on all-cause mortality (RR 1.38, 95% CI 0.47 to 4.04; I2 = 0%; 2 trials, 348 participants; very low-certainty evidence), or versus doxycycline (RR 0.93, 95% CI 0.13 to 6.46; 1 trial, 168 participants; very low-certainty evidence). The evidence is very uncertain about the effect of cefotaxime versus doxycycline on all-cause mortality (RR 0.18, 95% CI 0.01 to 3.78; 1 trial, 169 participants; very low-certainty evidence). The evidence is very uncertain about the effect of penicillin versus doxycycline on serious adverse events (nosocomial infection) (RR 0.62, 95% CI 0.11 to 3.62; 1 trial, 168 participants; very low-certainty evidence) or versus cefotaxime (RR 1.01, 95% CI 0.15 to 7.02; 1 trial, 175 participants; very low-certainty evidence). The evidence is very uncertain about the effect of doxycycline versus cefotaxime on serious adverse events (nosocomial infection) (RR 1.01, 95% CI 0.15 to 7.02; 1 trial, 175 participants; very low-certainty evidence). The evidence is very uncertain about the effect of penicillin versus cefotaxime (RR 3.03, 95% CI 0.13 to 73.47; 1 trial, 175 participants; very low-certainty evidence), versus doxycycline (RR 2.80, 95% CI 0.12 to 67.66; 1 trial, 175 participants; very low-certainty evidence), or versus chloramphenicol on adverse events considered non-serious (RR 0.74, 95% CI 0.15 to 3.67; 1 trial, 52 participants; very low-certainty evidence). Funding Six of the nine trials included statements disclosing their funding/supporting sources and three trials did not mention funding source. Four of the six trials mentioning sources received funds from public or governmental sources or from international charitable sources, and the remaining two, in addition to public or governmental sources, received support in the form of trial drug supply directly from pharmaceutical companies. As the certainty of evidence is very low, we do not know if antibiotics provide little to no effect on all-cause mortality, serious adverse events, or adverse events considered non-serious. There is a lack of definitive rigorous data from randomised trials to support the use of antibiotics for treating leptospirosis infection, and the absence of trials reporting data on clinically relevant outcomes further adds to this limitation.
Win TZ ,Han SM ,Edwards T ,Maung HT ,Brett-Major DM ,Smith C ,Lee N ... - 《Cochrane Database of Systematic Reviews》
被引量: 1 发表:1970年 -
Ovarian cancer is the seventh most common cancer among women and a leading cause of death from gynaecological malignancies. Epithelial ovarian cancer is the most common type, accounting for around 90% of all ovarian cancers. This specific type of ovarian cancer starts in the surface layer covering the ovary or lining of the fallopian tube. Surgery is performed either before chemotherapy (upfront or primary debulking surgery (PDS)) or in the middle of a course of treatment with chemotherapy (neoadjuvant chemotherapy (NACT) and interval debulking surgery (IDS)), with the aim of removing all visible tumour and achieving no macroscopic residual disease (NMRD). The aim of this review is to investigate the prognostic impact of size of residual disease nodules (RD) in women who received upfront or interval cytoreductive surgery for advanced (stage III and IV) epithelial ovarian cancer (EOC). To assess the prognostic impact of residual disease after primary surgery on survival outcomes for advanced (stage III and IV) epithelial ovarian cancer. In separate analyses, primary surgery included both upfront primary debulking surgery (PDS) followed by adjuvant chemotherapy and neoadjuvant chemotherapy followed by interval debulking surgery (IDS). Each residual disease threshold is considered as a separate prognostic factor. We searched CENTRAL (2021, Issue 8), MEDLINE via Ovid (to 30 August 2021) and Embase via Ovid (to 30 August 2021). We included survival data from studies of at least 100 women with advanced EOC after primary surgery. Residual disease was assessed as a prognostic factor in multivariate prognostic models. We excluded studies that reported fewer than 100 women, women with concurrent malignancies or studies that only reported unadjusted results. Women were included into two distinct groups: those who received PDS followed by platinum-based chemotherapy and those who received IDS, analysed separately. We included studies that reported all RD thresholds after surgery, but the main thresholds of interest were microscopic RD (labelled NMRD), RD 0.1 cm to 1 cm (small-volume residual disease (SVRD)) and RD > 1 cm (large-volume residual disease (LVRD)). Two review authors independently abstracted data and assessed risk of bias. Where possible, we synthesised the data in meta-analysis. To assess the adequacy of adjustment factors used in multivariate Cox models, we used the 'adjustment for other prognostic factors' and 'statistical analysis and reporting' domains of the quality in prognosis studies (QUIPS) tool. We also made judgements about the certainty of the evidence for each outcome in the main comparisons, using GRADE. We examined differences between FIGO stages III and IV for different thresholds of RD after primary surgery. We considered factors such as age, grade, length of follow-up, type and experience of surgeon, and type of surgery in the interpretation of any heterogeneity. We also performed sensitivity analyses that distinguished between studies that included NMRD in RD categories of < 1 cm and those that did not. This was applicable to comparisons involving RD < 1 cm with the exception of RD < 1 cm versus NMRD. We evaluated women undergoing PDS and IDS in separate analyses. We found 46 studies reporting multivariate prognostic analyses, including RD as a prognostic factor, which met our inclusion criteria: 22,376 women who underwent PDS and 3697 who underwent IDS, all with varying levels of RD. While we identified a range of different RD thresholds, we mainly report on comparisons that are the focus of a key area of clinical uncertainty (involving NMRD, SVRD and LVRD). The comparison involving any visible disease (RD > 0 cm) and NMRD was also important. SVRD versus NMRD in a PDS setting In PDS studies, most showed an increased risk of death in all RD groups when those with macroscopic RD (MRD) were compared to NMRD. Women who had SVRD after PDS had more than twice the risk of death compared to women with NMRD (hazard ratio (HR) 2.03, 95% confidence interval (CI) 1.80 to 2.29; I2 = 50%; 17 studies; 9404 participants; moderate-certainty). The analysis of progression-free survival found that women who had SVRD after PDS had nearly twice the risk of death compared to women with NMRD (HR 1.88, 95% CI 1.63 to 2.16; I2 = 63%; 10 studies; 6596 participants; moderate-certainty). LVRD versus SVRD in a PDS setting When we compared LVRD versus SVRD following surgery, the estimates were attenuated compared to NMRD comparisons. All analyses showed an overall survival benefit in women who had RD < 1 cm after surgery (HR 1.22, 95% CI 1.13 to 1.32; I2 = 0%; 5 studies; 6000 participants; moderate-certainty). The results were robust to analyses of progression-free survival. SVRD and LVRD versus NMRD in an IDS setting The one study that defined the categories as NMRD, SVRD and LVRD showed that women who had SVRD and LVRD after IDS had more than twice the risk of death compared to women who had NMRD (HR 2.09, 95% CI 1.20 to 3.66; 310 participants; I2 = 56%, and HR 2.23, 95% CI 1.49 to 3.34; 343 participants; I2 = 35%; very low-certainty, for SVRD versus NMRD and LVRD versus NMRD, respectively). LVRD versus SVRD + NMRD in an IDS setting Meta-analysis found that women who had LVRD had a greater risk of death and disease progression compared to women who had either SVRD or NMRD (HR 1.60, 95% CI 1.21 to 2.11; 6 studies; 1572 participants; I2 = 58% for overall survival and HR 1.76, 95% CI 1.23 to 2.52; 1145 participants; I2 = 60% for progression-free survival; very low-certainty). However, this result is biased as in all but one study it was not possible to distinguish NMRD within the < 1 cm thresholds. Only one study separated NMRD from SVRD; all others included NMRD in the SVRD group, which may create bias when comparing with LVRD, making interpretation challenging. MRD versus NMRD in an IDS setting Women who had any amount of MRD after IDS had more than twice the risk of death compared to women with NMRD (HR 2.11, 95% CI 1.35 to 3.29, I2 = 81%; 906 participants; very low-certainty). In a PDS setting, there is moderate-certainty evidence that the amount of RD after primary surgery is a prognostic factor for overall and progression-free survival in women with advanced ovarian cancer. We separated our analysis into three distinct categories for the survival outcome including NMRD, SVRD and LVRD. After IDS, there may be only two categories required, although this is based on very low-certainty evidence, as all but one study included NMRD in the SVRD category. The one study that separated NMRD from SVRD showed no improved survival outcome in the SVRD category, compared to LVRD. Further low-certainty evidence also supported restricting to two categories, where women who had any amount of MRD after IDS had a significantly greater risk of death compared to women with NMRD. Therefore, the evidence presented in this review cannot conclude that using three categories applies in an IDS setting (very low-certainty evidence), as was supported for PDS (which has convincing moderate-certainty evidence).
Bryant A ,Hiu S ,Kunonga PT ,Gajjar K ,Craig D ,Vale L ,Winter-Roach BA ,Elattar A ,Naik R ... - 《Cochrane Database of Systematic Reviews》
被引量: 22 发表:1970年 -
Treatment for women with postpartum iron deficiency anaemia.
Postpartum iron deficiency anaemia is caused by antenatal iron deficiency or excessive blood loss at delivery and might affect up to 50% of labouring women in low- and middle-income countries. Effective and safe treatment during early motherhood is important for maternal well-being and newborn care. Treatment options include oral iron supplementation, intravenous iron, erythropoietin, and red blood cell transfusion. To assess the benefits and harms of the available treatment modalities for women with postpartum iron deficiency anaemia. These include intravenous iron, oral iron supplementation, red blood cell transfusion, and erythropoietin. A Cochrane Information Specialist searched for all published, unpublished, and ongoing trials, without language or publication status restrictions. We searched databases including CENTRAL, MEDLINE, Embase, CINAHL, LILACS, WHO ICTRP, and ClinicalTrials.gov, together with reference checking, citation searching, and contact with study authors to identify eligible studies. We applied date limits to retrieve new records since the last search on 9 April 2015 until 11 April 2024. We included published, unpublished, and ongoing randomised controlled trials (RCTs) that compared treatments for postpartum iron deficiency anaemia with placebo, no treatment, or alternative treatments. Cluster-randomised trials were eligible for inclusion. We included RCTs regardless of blinding. Participants were women with postpartum haemoglobin ≤ 12 g/dL, treated within six weeks after childbirth. We excluded non-randomised, quasi-randomised, and cross-over trials. The critical outcomes of this review were maternal mortality and fatigue. The important outcomes included persistent anaemia symptoms, persistent postpartum anaemia, psychological well-being, infections, compliance with treatment, breastfeeding, length of hospital stay, serious adverse events, anaphylaxis or evidence of hypersensitivity, flushing/Fishbane reaction, injection discomfort/reaction, constipation, gastrointestinal pain, number of red blood cell transfusions, and haemoglobin levels. We assessed risk of bias in the included studies using the Cochrane RoB 1 tool. Two review authors independently performed study screening, risk of bias assessment, and data extraction. We contacted trial authors for supplementary data when necessary. We screened all trials for trustworthiness and scientific integrity using the Cochrane Trustworthiness Screening Tool. We conducted meta-analyses using a fixed-effect model whenever feasible to synthesise outcomes. In cases where data were not suitable for meta-analysis, we provided a narrative summary of important findings. We evaluated the overall certainty of the evidence using GRADE. We included 33 RCTs with a total of 4558 postpartum women. Most trials were at high risk of bias for several risk of bias domains. Most of the evidence was of low or very low certainty. Imprecision due to few events and risk of bias due to lack of blinding were the most important factors. Intravenous iron versus oral iron supplementation The evidence is very uncertain about the effect of intravenous iron on mortality (risk ratio (RR) 2.95, 95% confidence interval (CI) 0.12 to 71.96; P = 0.51; I² = not applicable; 3 RCTs; 1 event; 572 women; very low-certainty evidence). One woman died of cardiomyopathy, and another developed arrhythmia, both in the groups treated with intravenous iron. Intravenous iron probably results in a slight reduction in fatigue within 8 to 28 days (standardised mean difference -0.25, 95% CI -0.42 to -0.07; P = 0.006; I² = 47%; 2 RCTs; 515 women; moderate-certainty evidence). Breastfeeding was not reported. Oral iron probably increases the risk of constipation compared to intravenous iron (RR 0.12, 95% CI 0.06 to 0.21; P < 0.001; I² = 0%; 10 RCTs; 1798 women; moderate-certainty evidence). The evidence is very uncertain about the effect of intravenous iron on anaphylaxis or hypersensitivity (RR 2.77, 95% CI 0.31 to 24.86; P = 0.36; I² = 0%; 12 RCTs; 2195 women; very low-certainty evidence). Three women treated with intravenous iron experienced anaphylaxis or hypersensitivity. The trials that reported on haemoglobin at 8 to 28 days were too heterogeneous to pool. However, 5 of 6 RCTs favoured intravenous iron, with mean changes in haemoglobin ranging from 0.73 to 2.10 g/dL (low-certainty evidence). Red blood cell transfusion versus intravenous iron No women died in the only trial that reported on mortality (1 RCT; 7 women; very low-certainty evidence). The evidence is very uncertain about the effect of red blood cell transfusion on fatigue at 8 to 28 days (mean difference (MD) 1.20, 95% CI -2.41 to 4.81; P = 0.51; I² = not applicable; 1 RCT; 13 women; very low-certainty evidence) and breastfeeding more than six weeks postpartum (RR 0.43, 95% CI 0.12 to 1.57; P = 0.20; I² = not applicable; 1 RCT; 13 women; very low-certainty evidence). Constipation and anaphylaxis were not reported. Red blood cell transfusion may result in little to no difference in haemoglobin within 8 to 28 days (MD -1.00, 95% CI -2.02 to 0.02; P = 0.05; I² = not applicable; 1 RCT; 12 women; low-certainty evidence). Intravenous iron and oral iron supplementation versus oral iron supplementation Mortality and breastfeeding were not reported. One trial reported a greater improvement in fatigue in the intravenous and oral iron group, but the effect size could not be calculated (1 RCT; 128 women; very low-certainty evidence). Intravenous iron and oral iron may result in a reduction in constipation compared to oral iron alone (RR 0.21, 95% CI 0.07 to 0.69; P = 0.01; I² = not applicable; 1 RCT; 128 women; low-certainty evidence). There were no anaphylaxis or hypersensitivity events in the trials (2 RCTs; 168 women; very low-certainty evidence). Intravenous iron and oral iron may result in little to no difference in haemoglobin (g/dL) at 8 to 28 days (MD 0.00, 95% CI -0.48 to 0.48; P = 1.00; I² = not applicable; 1 RCT; 60 women; low-certainty evidence). Red blood cell transfusion versus no transfusion Mortality, fatigue at day 8 to 28, constipation, anaphylaxis, and haemoglobin were not reported. Red blood cell transfusion may result in little to no difference in breastfeeding more than six weeks postpartum (RR 0.91, 95% CI 0.78 to 1.07; P = 0.24; I² = not applicable; 1 RCT; 297 women; low-certainty evidence). Oral iron supplementation versus placebo or no treatment Mortality, fatigue, breastfeeding, constipation, anaphylaxis, and haemoglobin were not reported. Two trials reported on gastrointestinal symptoms, but did not report results by study arm. Intravenous iron probably reduces fatigue slightly in the early postpartum weeks (8 to 28 days) compared to oral iron tablets, but probably results in little to no difference after four weeks. It is very uncertain if intravenous iron has an effect on mortality and anaphylaxis/hypersensitivity. Breastfeeding was not reported. Intravenous iron may increase haemoglobin slightly more than iron tablets, but the data were too heterogeneous to pool. However, changes in haemoglobin levels are a surrogate outcome, and treatment decisions should preferentially be based on patient-relevant outcomes. Iron tablets probably result in a large increase in constipation compared to intravenous iron. The effect of red blood cell transfusion compared to intravenous iron on mortality, fatigue, and breastfeeding is very uncertain. No studies reported on constipation or anaphylaxis/hypersensitivity. Red blood cell transfusion may result in little to no difference in haemoglobin at 8 to 28 days. The effect of intravenous iron and oral iron supplementation on mortality, fatigue, breastfeeding, and anaphylaxis/hypersensitivity is very uncertain or unreported. Intravenous iron and oral iron may result in a reduction in constipation compared to oral iron alone, and in little to no difference in haemoglobin. The effect of red blood cell transfusion compared to non-transfusion on mortality, fatigue, constipation, anaphylaxis/hypersensitivity, and haemoglobin is unreported. Red blood cell transfusion may result in little to no difference in breastfeeding. The effect of oral iron supplementation on mortality, fatigue, breastfeeding, constipation, anaphylaxis/hypersensitivity, and haemoglobin is unreported. This Cochrane review had no dedicated funding. Protocol and previous versions are available: Protocol (2013) [DOI: 10.1002/14651858.CD010861] Original review (2004) [DOI: 10.1002/14651858.CD004222.pub2] Review update (2015) [DOI: 10.1002/14651858.CD010861.pub2].
Jensen MCH ,Holm C ,Jørgensen KJ ,Schroll JB ... - 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年
加载更多
加载更多
加载更多