The antagonistic effect of FTO on METTL14 promotes AKT3 m(6)A demethylation and the progression of esophageal cancer.

来自 PUBMED

作者:

Wei RZhao FKong LPu YLi YZang C

展开

摘要:

As the most abundant modification in eukaryotic messenger RNAs (mRNAs), N6-methyladenosine (m6A) plays vital roles in many biological processes. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and transcriptomic RNA sequencing (RNA-seq) were used to screen for m6A targets in esophageal cancer cells and patients. The role of m6A RNA methylase in esophageal cancer was also analyzed using bioinformatics. In vitro and in vivo experiments were used to analyze gene expression and function. CCK-8, colony formation, cell apoptosis and immunofluorescence staining assays were performed to evaluate the proliferation, migration and invasion of esophageal cancer cells, respectively. Western blot analysis, RNA stability, RIP and luciferase reporter assays were performed to elucidate the underlying mechanism involved. We found that the m6A demethylase FTO was significantly upregulated in esophageal cancer cell lines and patient tissues. In vivo and in vitro assays demonstrated that FTO was involved in the proliferation and apoptosis of esophageal cancer cells. Moreover, we found that the m6A methyltransferase METTL14 negatively regulates FTO function in esophageal cancer progression. FTO alone is not related to the prognosis of esophageal cancer, and its function is antagonized by METTL14. By using transcriptome-wide m6A-seq and RNA-seq assays, we revealed that AKT3 is a downstream target of FTO and acts in concert to regulate the tumorigenesis and metastasis of esophageal cancer. Taken together, these findings provide insight into m6A-mediated tumorigenesis in esophageal cancer and could lead to the design of new therapeutic strategies.

收起

展开

DOI:

10.1007/s00432-024-05660-2

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(119)

参考文献(56)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读