Analysis and Validation of Tyrosine Metabolism-related Prognostic Features for Liver Hepatocellular Carcinoma Therapy.

来自 PUBMED

作者:

Cui ZLiu CLi HWang JLi G

展开

摘要:

To explore tyrosine metabolism-related characteristics in liver hepatocellular carcinoma (LIHC) and to establish a risk signature for the prognostic prediction of LIHC. Novel prognostic signatures contribute to the mining of novel biomarkers, which are essential for the construction of a precision medicine system for LIHC and the improvement of survival. Tyrosine metabolism plays a critical role in the initiation and development of LIHC. Based on the tyrosine metabolism-related characteristics in LIHC, this study developed a risk signature to improve the prognostic prediction of patients with LIHC. To investigate the correlation between tyrosine metabolism and progression of LIHC and to develop a tyrosine metabolism-related prognostic model. Gene expression and clinicopathological information of LIHC were obtained from The Cancer Genome Atlas (TCGA) database. Distinct subtypes of LIHC were classified by performing consensus cluster analysis on the tyrosine metabolism-related genes. Univariate and Lasso Cox regression were used to develop a RiskScore prognosis model. Kaplan-Meier (KM) survival analysis with log-rank test and area under the curve (AUC) of receiver operating characteristic (ROC) were employed in the prognostic evaluation and prediction validation. Immune infiltration, tyrosine metabolism score, and pathway enrichment were evaluated using single-sample gene set enrichment analysis (ssGSEA). Finally, a nomogram model was developed with the RiskScore and other clinicopathological features. Based on the tyrosine metabolism genes in the TCGA cohort, we identified 3 tyrosine metabolism-related subtypes showing significant prognostic differences. Four candidate genes selected from the common differentially expressed genes (DEGs) between the 3 subtypes were used to develop a RiskScore model, which could effectively divide LIHC patients into high- and lowrisk groups. In both the training and validation sets, high-risk patients tended to have worse overall survival, less active immunotherapy response, higher immune infiltration and clinical grade, and higher oxidative, fatty, and xenobiotic metabolism pathways. Multivariate analysis confirmed that the RiskScore was an independent indicator for the prognosis of LIHC. The results from pan-- cancer analysis also supported that the RiskScore had a strong prognostic performance in other cancers. The nomogram demonstrated that the RiskScore contributed the most to the prediction of LIHC prognosis. Our study developed a tyrosine metabolism-related risk model that performed well in survival prediction, showing the potential to serve as an independent prognostic predictor for LIHC treatment.

收起

展开

DOI:

10.2174/0109298673290101240223074545

被引量:

0

年份:

2025

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读