Genetic liability of gut microbiota for idiopathic pulmonary fibrosis and lung function: a two-sample Mendelian randomization study.
The microbiota-gut-lung axis has elucidated a potential association between gut microbiota and idiopathic pulmonary fibrosis (IPF). However, there is a paucity of population-level studies with providing robust evidence for establishing causality. This two-sample Mendelian randomization (MR) analysis aimed to investigate the causal relationship between the gut microbiota and IPF as well as lung function.
Adhering to Mendel's principle of inheritance, this MR analysis utilized summary-level data from respective genome-wide association studies (GWAS) involving 211 gut microbial taxa, IPF, and lung function indicators such as FEV1, FVC, and FEV1/FVC. A bidirectional two-sample MR design was employed, utilizing multiple MR analysis methods, including inverse variance-weighted (IVW), weighted median, MR-Egger, and weighted mode. Multivariable MR (MVMR) was used to uncover mediating factors connecting the exposure and outcome. Additionally, comprehensive sensitivity analyses were conducted to ensure the robustness of the results.
The MR results confirmed four taxa were found causally associated with the risk of IPF. Order Bifidobacteriales (OR=0.773, 95% CI: 0.610-0.979, p=0.033), Family Bifidobacteriaceae (OR=0.773, 95% CI: 0.610-0.979, p=0.033), and Genus RuminococcaceaeUCG009 (OR=0.793, 95% CI: 0.652-0.965, p=0.020) exerted protective effects on IPF, while Genus Coprococcus2 (OR=1.349, 95% CI: 1.021-1.783, p=0.035) promote the development of IPF. Several taxa were causally associated with lung function, with those in Class Deltaproteobacteria, Order Desulfovibrionales, Family Desulfovibrionaceae, Class Verrucomicrobiae, Order Verrucomicrobiales and Family Verrucomicrobiaceae being the most prominent beneficial microbiota, while those in Family Lachnospiraceae, Genus Oscillospira, and Genus Parasutterella were associated with impaired lung function. As for the reverse analysis, MR results confirmed the effects of FEV1 and FVC on the increased abundance of six taxa (Phylum Actinobacteria, Class Actinobacteria, Order Bifidobacteriales, Family Bifidobacteriaceae, Genus Bifidobacterium, and Genus Ruminiclostridium9) with a boosted level of evidence. MVMR suggested monounsaturated fatty acids, total fatty acids, saturated fatty acids, and ratio of omega-6 fatty acids to total fatty acids as potential mediating factors in the genetic association between gut microbiota and IPF.
The current study suggested the casual effects of the specific gut microbes on the risk of IPF and lung function. In turn, lung function also exerted a positive role in some gut microbes. A reasonable dietary intake of lipid substances has a certain protective effect against the occurrence and progression of IPF. This study provides novel insights into the potential role of gut microbiota in IPF and indicates a possible gut microbiota-mediated mechanism for the prevention of IPF.
Ren Y
,Zhang Y
,Cheng Y
,Qin H
,Zhao H
... -
《Frontiers in Cellular and Infection Microbiology》
Two-sample Mendelian randomization to study the causal association between gut microbiota and atherosclerosis.
According to some recent observational studies, the gut microbiota influences atherosclerosis via the gut microbiota-artery axis. However, the causal role of the gut microbiota in atherosclerosis remains unclear. Therefore, we used a Mendelian randomization (MR) strategy to try to dissect this causative link.
The biggest known genome-wide association study (GWAS) (n = 13,266) from the MiBioGen collaboration was used to provide summary data on the gut microbiota for a two-sample MR research. Data on atherosclerosis were obtained from publicly available GWAS data from the FinnGen consortium, including cerebral atherosclerosis (104 cases and 218,688 controls), coronary atherosclerosis (23,363 cases and 187,840 controls), and peripheral atherosclerosis (6631 cases and 162,201 controls). The causal link between gut microbiota and atherosclerosis was investigated using inverse variance weighting, MR-Egger, weighted median, weighted mode, and simple mode approaches, among which inverse variance weighting was the main research method. Cochran's Q statistic was used to quantify the heterogeneity of instrumental variables (IVs), and the MR Egger intercept test was used to assess the pleiotropy of IVs.
Inverse-variance-weighted (IVW) estimation showed that genus Ruminiclostridium 9 had a protective influence on cerebral atherosclerosis (OR = 0.10, 95% CI: 0.01-0.67, P = 0.018), while family Rikenellaceae (OR = 5.39, 95% CI: 1.50-19.37, P = 0.010), family Streptococcaceae (OR = 6.87, 95% CI: 1.60-29.49, P = 0.010), genus Paraprevotella (OR = 2.88, 95% CI: 1.18-7.05, P = 0.021), and genus Streptococcus (OR = 5.26, 95% CI: 1.28-21.61, P = 0.021) had pathogenic effects on cerebral atherosclerosis. For family Acidaminococcaceae (OR = 0.87, 95% CI: 0.76-0.99, P = 0.039), the genus Desulfovibrio (OR = 0.89, 95% CI: 0.80-1.00, P = 0.048), the genus RuminococcaceaeUCG010 (OR = 0.80, 95% CI: 0.69-0.94, P = 0.006), and the Firmicutes phyla (OR = 0.87, 95% CI: 0.77-0.98, P = 0.023) were protective against coronary atherosclerosis. However, the genus Catenibacterium (OR = 1.12, 95% CI: 1.00-1.24, P = 0.049) had a pathogenic effect on coronary atherosclerosis. Finally, class Actinobacteria (OR = 0.83, 95% CI: 0.69-0.99, P = 0.036), family Acidaminococcaceae (OR = 0.76, 95% CI: 0.61-0.94, P = 0.013), genus Coprococcus2 (OR = 0.76, 95% CI: 0.60-0.96, P = 0.022), and genus RuminococcaceaeUCG010 (OR = 0.65, 95% CI: 0.46-0.92, P = 0.013), these four microbiota have a protective effect on peripheral atherosclerosis. However, for the genus Lachnoclostridium (OR = 1.25, 95% CI: 1.01-1.56, P = 0.040) and the genus LachnospiraceaeUCG001 (OR = 1.22, 95% CI: 1.04-1.42, P = 0.016), there is a pathogenic role for peripheral atherosclerosis. No heterogeneity was found for instrumental variables, and no considerable horizontal pleiotropy was observed.
We discovered that the presence of probiotics and pathogens in the host is causally associated with atherosclerosis, and atherosclerosis at different sites is causally linked to specific gut microbiota. The specific gut microbiota associated with atherosclerosis identified by Mendelian randomization studies provides precise clinical targets for the treatment of atherosclerosis. In the future, we can further examine the gut microbiota's therapeutic potential for atherosclerosis if we have a better grasp of the causal relationship between it and atherosclerosis.
Jiang S
,Yu C
,Lv B
,He S
,Zheng Y
,Yang W
,Wang B
,Li D
,Lin J
... -
《Frontiers in Immunology》
Causal associations between gut microbiota and premature rupture of membranes: a two-sample Mendelian randomization study.
Previous study has indicated a potential link between gut microbiota and maternal pregnancy outcomes. However, the causal relationship between gut microbiota and premature rupture of membranes (PROM) remains a topic of ongoing debate.
A two-sample Mendelian Randomization (MR) study was used to investigate the relationship between gut microbiota and PROM. Genetic data on gut microbiota was obtained from the MiBioGen consortium's largest genome-wide association study (GWAS) (n=14,306). Genetic data on PROM (3011 cases and 104247 controls) were sourced from publicly available GWAS data from the Finnish National Biobank FinnGen consortium. Various methods including Inverse variance weighted (IVW), MR-Egger, simple mode, weighted median, and weighted mode were utilized to assess the causal relationship by calculating the odd ratio (OR) value and confidence interval (CI). Sensitivity analyses for quality control were performed using MR-Egger intercept tests, Cochran's Q tests, and leave-one-out analyses.
The IVW method revealed that class Mollicutes (IVW, OR=0.773, 95%CI: 0.61-0.981, pval = 0.034), genus Marvinbryantia (IVW, OR=00.736, 95%CI: 0.555-0.977, pval = 0.034), genus Ruminooccaceae UCG003 (IVW, OR=0.734, 95%CI: 0.568-0.947, pval = 0.017) and phylum Tenericutes (IVW, OR=0.773, 95%CI: 0.566-1.067, pval = 0.034) were associated with a reduced risk of PROM, while genus Collinsella (IVW, OR=1.444, 95%CI: 1.028-2.026, pval = 0.034), genus Intestinibacter (IVW, OR=1.304, 95%CI: 1.047-1.623, pval = 0.018) and genus Turicibacter (IVW, OR=1.282, 95%CI: 1.02-1.611, pval = 0.033) increased the risk of PROM. Based on the other four supplementary methods, six gut microbiota may have a potential effect on PROM. Due to the presence of pleiotropy (pval=0.045), genus Lachnoclostridium should be ruled out. No evidence of horizontal pleiotropy or heterogeneity was found in other microbiota (pval >0.05).
In this study, we have discovered a causal relationship between the presence of specific probiotics and pathogens in the host and the risk of PROM. The identification of specific gut microbiota associated with PROM through MR studies offers a novel approach to diagnosing and treating this condition, thereby providing a new strategy for clinically preventing PROM.
Zhang L
,Li Q
,Huang J
,Zou Q
,Zou H
,Zhang X
,Su Y
,Li C
... -
《Frontiers in Immunology》