Amyloid-Beta Peptides 40 and 42 Employ Distinct Molecular Pathways for Cell Entry and Intracellular Transit at the Blood-Brain Barrier Endothelium.
The blood-brain barrier (BBB) plays a critical role in maintaining the equilibrium between amyloid beta (Aβ) levels in blood and the brain by regulating Aβ transport. Our previous publications demonstrated that BBB trafficking of Aβ42 and Aβ40 is distinct and is disrupted under various pathophysiological conditions. However, the intracellular mechanisms that allow BBB endothelium to differentially handle Aβ40 and Aβ42 have not been clearly elucidated. In this study, we identified mechanisms of Aβ endocytosis in polarized human cerebral microvascular endothelial cell monolayers. Our studies demonstrated that Aβ peptides with fluorescent label (F-Aβ) were internalized by BBB endothelial cells via energy, dynamin, and actin-dependent endocytosis. Interestingly, endocytosis of F-Aβ40 but not F-Aβ42 was substantially reduced by clathrin inhibition, whereas F-Aβ42 but not F-Aβ40 endocytosis was reduced by half after inhibiting the caveolae-mediated pathway. Following endocytosis, both isoforms were sorted by the endo-lysosomal system. Although Aβ42 was shown to accumulate more in the lysosomes, which could lead to its higher degradation and/or aggregation at lower lysosomal pH, Aβ40 demonstrated robust accumulation in recycling endosomes, which may facilitate its exocytosis by the endothelial cells. These results provide a mechanistic insight into the selective ability of BBB endothelium to transport Aβ40 versus Aβ42. This knowledge contributes to the understanding of molecular pathways underlying Aβ accumulation in the BBB endothelium and associated BBB dysfunction. Moreover, it allows us to establish mechanistic rationale for altered Aβ40:Aβ42 ratios and anomalous amyloid deposition in the cerebral vasculature as well as brain parenchyma during Alzheimer's disease progression. SIGNIFICANCE STATEMENT: Differential interaction of Aβ40 and Aβ42 isoforms with the blood-brain barrier (BBB) endothelium may contribute to perturbation in Aβ42:Aβ40 ratio, which is associated with Alzheimer's disease (AD) progression and severity. The current study identified distinct molecular pathways by which Aβ40 and Aβ42 are trafficked at the BBB, which regulates equilibrium between blood and brain Aβ levels. These findings provide molecular insights into mechanisms that engender BBB dysfunction and promote Aβ accumulation in AD brain.
Wang Z
,Sharda N
,Omtri RS
,Li L
,Kandimalla KK
... -
《-》
High-Density Lipoprotein Mimetic Peptide 4F Efficiently Crosses the Blood-Brain Barrier and Modulates Amyloid-β Distribution between Brain and Plasma.
Treatments to elevate high-density lipoprotein (HDL) levels in plasma have decreased cerebrovascular amyloid -β (Aβ) deposition and mitigated cognitive decline in Alzheimer disease (AD) transgenic mice. Since the major protein component of HDL particles, apolipoprotein A-I (ApoA-I), has very low permeability at the blood-brain barrier (BBB), we investigated 4F, an 18-amino-acid ApoA-I/HDL mimetic peptide, as a therapeutic alternative. Specifically, we examined the BBB permeability of 4F and its effects on [125I]Aβ trafficking from brain to blood and from blood to brain. After systemic injection in mice, the BBB permeability of [125I]4F, estimated as the permeability-surface area (PS) product, ranged between 2 and 5 × 10-6 ml/g per second in various brain regions. The PS products of [125I]4F were ∼1000-fold higher compared with those determined for [125I]ApoA-I. Moreover, systemic infusion with 4F increased the brain efflux of intracerebrally injected [125I]Aβ42. Conversely, 4F infusion decreased the brain influx of systemically injected [125I]Aβ42. Interestingly, 4F did not significantly alter the brain influx of [125I]Aβ40. To corroborate the in vivo findings, we evaluated the effects of 4F on [125I]Aβ42 transcytosis across polarized human BBB endothelial cell (hCMEC/D3) monolayers. Treatment with 4F increased the abluminal-to-luminal flux and decreased the luminal-to-abluminal flux of [125I]Aβ42 across the hCMEC/D3 monolayers. Additionally, 4F decreased the endothelial accumulation of fluorescein-labeled Aβ42 in the hCMEC/D3 monolayers. These findings provide a mechanistic interpretation for the reductions in brain Aβ burden reported in AD mice after oral 4F administration, which represents a novel strategy for treating AD and cerebral amyloid angiopathy. SIGNIFICANCE STATEMENT: The brain permeability of the ApoA-I mimetic peptide 4F was estimated to be ∼1000-fold greater than ApoA-I after systemic injection of radiolabeled peptide/protein in mice. Further, 4F treatment increased the brain efflux of amyloid -β and also decreased its brain influx, as evaluated in mice and in blood-brain barrier cell monolayers. Thus, 4F represents a potential therapeutic strategy to mitigate brain amyloid accumulation in cerebral amyloid angiopathy and Alzheimer disease.
Swaminathan SK
,Zhou AL
,Ahlschwede KM
,Curran GL
,Lowe VJ
,Li L
,Kandimalla KK
... -
《-》
Rg1 improves Alzheimer's disease by regulating mitochondrial dynamics mediated by the AMPK/Drp1 signaling pathway.
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by a complex pathogenesis that includes Aβ deposition, abnormal phosphorylation of tau protein, chronic neuroinflammation, and mitochondrial dysfunction. In traditional medicine, ginseng is revered as the 'king of herbs'. Ginseng has the effects of greatly tonifying vital energy, strengthening the spleen and benefiting the lungs, generating fluids and nourishing the blood, and calming the mind while enhancing intelligence. Ginsenoside Rg1 (Rg1) is a well-defined major active component found in ginseng, known for its relatively high content. It has been demonstrated to exhibit neuroprotective effects in both in vivo and in vitro models, capable of ameliorating Aβ and tau pathology, regulating synaptic function, and reducing inflammation, oxidative stress, and apoptosis. However, the potential of Rg1 to improve AD pathology through the regulation of mitochondrial dynamics is still uncertain.
Despite the active research efforts on drugs for AD, the currently available anti-AD medications can only slow disease progression and manage symptoms, yet unable to provide a cure for AD. Furthermore, some anti-AD drugs failed phase III and IV clinical trials due to significant side effects. Therefore, there is an urgent need to further investigate the pathogenesis of AD, to identify new therapeutic targets, and to explore more effective therapies. The aim of this study is to evaluate the potential therapeutic effects of Rg1 on APP/PS1 double transgenic mice and Aβ42-induced HT22 cell models, and to investigate the potential mechanisms through which it provides neuroprotective effects.
This study investigates the effects of Rg1 in treating AD on APP/PS1 double transgenic mice and Aβ42-induced HT22 cells. In the in vivo experiments, APP/PS1 mice were divided into a model group, Rg1-L group, Rg1-H group, and donepezil group, with C57BL/6 mice serving as the control group (n = 12 per group). The Rg1-L and Rg1-H groups were administered Rg1 at doses of 5 mg/kg/d and 10 mg/kg/d, respectively, while the donepezil group received donepezil at a dose of 1.3 mg/kg/d. Both the control and model groups received an equal volume of physiological saline daily for 28 days. Learning and spatial memory were assessed by the Morris water maze (MWM) and novel object recognition (NOR) tests, and neuronal damage by Nissl staining. Aβ deposition was analyzed through immunohistochemistry and Western blot, while the expression levels of synaptic proteins PSD95 and SYN were evaluated via immunofluorescence staining and Western blot. The dendritic spines of neurons was observed by Golgi staining.The ultrastructure of neuronal mitochondria and synapses was examined by transmission electron microscopy (TEM). Mitochondrial function was assessed through measurements of Reactive oxygen species (ROS), Superoxide Dismutase (SOD), and Adenosine Triphosphate (ATP), and Western blot analysis was performed to detect the expression levels of AMPK, p-AMPK, Drp1, p-Drp1, OPA1, Mfn1, and Mfn2, thereby investigating the protective effects of Rg1 on mitochondrial dysfunction and cognitive impairment in APP/PS1 double transgenic mice. In vitro experiments, HT22 cells were treated with Aβ42 of 10 μM for 24 h to verify the therapeutic effects of Rg1. Flow cytometry was used to detect ROS and JC-1, biochemical methods were employed to measure SOD and ATP, immunofluorescence staining was used to detect the expression levels of PSD95 and SYN, and Western blot analysis was conducted to elucidate its potential mechanisms of action.
The findings suggest that after 28 days of Rg1 treatment, cognitive dysfunction in APP/PS1 mice was improved. Pathological and immunohistochemical analyses demonstrated that Rg1 treatment significantly reduced Aβ deposition and neuronal loss. Rg1 can improve synaptic dysfunction and mitochondrial function in APP/PS1 mice. Rg1 activated AMPK, enhanced p-AMPK expression, inhibited Drp1, and reduced p-Drp1 levels, which led to increased expression of OPA1, Mfn1, and Mfn2, thereby inhibiting mitochondrial fission and facilitating mitochondrial fusion. Additionally, Rg1 effectively reversed the decrease in mitochondrial membrane potential (MMP) and the increase in ROS production induced by Aβ42 in HT22 cells, restoring SOD and ATP levels. Furthermore, Rg1 regulated mitochondrial fission mediated by the AMPK/Drp1 signaling pathway, promoting mitochondrial fusion and improving synaptic dysfunction.
Our research provides evidence for the neuroprotective mechanisms of Rg1 in AD models. Rg1 modulates mitochondrial dynamics through the AMPK/Drp1 signaling pathway, thereby reducing synaptic and mitochondrial dysfunction in APP/PS1 mice and AD cell models.
Zhang Y
,Liu S
,Cao D
,Zhao M
,Lu H
,Wang P
... -
《-》