Generative pretrained transformer-4, an artificial intelligence text predictive model, has a high capability for passing novel written radiology exam questions.
AI-image interpretation, through convolutional neural networks, shows increasing capability within radiology. These models have achieved impressive performance in specific tasks within controlled settings, but possess inherent limitations, such as the inability to consider clinical context. We assess the ability of large language models (LLMs) within the context of radiology specialty exams to determine whether they can evaluate relevant clinical information.
A database of questions was created with official sample, author written, and textbook questions based on the Royal College of Radiology (United Kingdom) FRCR 2A and American Board of Radiology (ABR) Certifying examinations. The questions were input into the Generative Pretrained Transformer (GPT) versions 3 and 4, with prompting to answer the questions.
One thousand seventy-two questions were evaluated by GPT-3 and GPT-4. 495 (46.2%) were for the FRCR 2A and 577 (53.8%) were for the ABR exam. There were 890 single best answers (SBA), and 182 true/false questions. GPT-4 was correct in 629/890 (70.7%) SBA and 151/182 (83.0%) true/false questions. There was no degradation on author written questions. GPT-4 performed significantly better than GPT-3 which selected the correct answer in 282/890 (31.7%) SBA and 111/182 (61.0%) true/false questions. Performance of GPT-4 was similar across both examinations for all categories of question.
The newest generation of LLMs, GPT-4, demonstrates high capability in answering radiology exam questions. It shows marked improvement from GPT-3, suggesting further improvements in accuracy are possible. Further research is needed to explore the clinical applicability of these AI models in real-world settings.
Sood A
,Mansoor N
,Memmi C
,Lynch M
,Lynch J
... -
《-》
Performance of Progressive Generations of GPT on an Exam Designed for Certifying Physicians as Certified Clinical Densitometrists.
Artificial intelligence (AI) large language models (LLMs) such as ChatGPT have demonstrated the ability to pass standardized exams. These models are not trained for a specific task, but instead trained to predict sequences of text from large corpora of documents sourced from the internet. It has been shown that even models trained on this general task can pass exams in a variety of domain-specific fields, including the United States Medical Licensing Examination. We asked if large language models would perform as well on a much narrower subdomain tests designed for medical specialists. Furthermore, we wanted to better understand how progressive generations of GPT (generative pre-trained transformer) models may be evolving in the completeness and sophistication of their responses even while generational training remains general. In this study, we evaluated the performance of two versions of GPT (GPT 3 and 4) on their ability to pass the certification exam given to physicians to work as osteoporosis specialists and become a certified clinical densitometrists. The CCD exam has a possible score range of 150 to 400. To pass, you need a score of 300.
A 100-question multiple-choice practice exam was obtained from a 3rd party exam preparation website that mimics the accredited certification tests given by the ISCD (International Society for Clinical Densitometry). The exam was administered to two versions of GPT, the free version (GPT Playground) and ChatGPT+, which are based on GPT-3 and GPT-4, respectively (OpenAI, San Francisco, CA). The systems were prompted with the exam questions verbatim. If the response was purely textual and did not specify which of the multiple-choice answers to select, the authors matched the text to the closest answer. Each exam was graded and an estimated ISCD score was provided from the exam website. In addition, each response was evaluated by a rheumatologist CCD and ranked for accuracy using a 5-level scale. The two GPT versions were compared in terms of response accuracy and length.
The average response length was 11.6 ±19 words for GPT-3 and 50.0±43.6 words for GPT-4. GPT-3 answered 62 questions correctly resulting in a failing ISCD score of 289. However, GPT-4 answered 82 questions correctly with a passing score of 342. GPT-3 scored highest on the "Overview of Low Bone Mass and Osteoporosis" category (72 % correct) while GPT-4 scored well above 80 % accuracy on all categories except "Imaging Technology in Bone Health" (65 % correct). Regarding subjective accuracy, GPT-3 answered 23 questions with nonsensical or totally wrong responses while GPT-4 had no responses in that category.
If this had been an actual certification exam, GPT-4 would now have a CCD suffix to its name even after being trained using general internet knowledge. Clearly, more goes into physician training than can be captured in this exam. However, GPT algorithms may prove to be valuable physician aids in the diagnoses and monitoring of osteoporosis and other diseases.
Valdez D
,Bunnell A
,Lim SY
,Sadowski P
,Shepherd JA
... -
《JOURNAL OF CLINICAL DENSITOMETRY》
Performance of GPT-4V in Answering the Japanese Otolaryngology Board Certification Examination Questions: Evaluation Study.
Artificial intelligence models can learn from medical literature and clinical cases and generate answers that rival human experts. However, challenges remain in the analysis of complex data containing images and diagrams.
This study aims to assess the answering capabilities and accuracy of ChatGPT-4 Vision (GPT-4V) for a set of 100 questions, including image-based questions, from the 2023 otolaryngology board certification examination.
Answers to 100 questions from the 2023 otolaryngology board certification examination, including image-based questions, were generated using GPT-4V. The accuracy rate was evaluated using different prompts, and the presence of images, clinical area of the questions, and variations in the answer content were examined.
The accuracy rate for text-only input was, on average, 24.7% but improved to 47.3% with the addition of English translation and prompts (P<.001). The average nonresponse rate for text-only input was 46.3%; this decreased to 2.7% with the addition of English translation and prompts (P<.001). The accuracy rate was lower for image-based questions than for text-only questions across all types of input, with a relatively high nonresponse rate. General questions and questions from the fields of head and neck allergies and nasal allergies had relatively high accuracy rates, which increased with the addition of translation and prompts. In terms of content, questions related to anatomy had the highest accuracy rate. For all content types, the addition of translation and prompts increased the accuracy rate. As for the performance based on image-based questions, the average of correct answer rate with text-only input was 30.4%, and that with text-plus-image input was 41.3% (P=.02).
Examination of artificial intelligence's answering capabilities for the otolaryngology board certification examination improves our understanding of its potential and limitations in this field. Although the improvement was noted with the addition of translation and prompts, the accuracy rate for image-based questions was lower than that for text-based questions, suggesting room for improvement in GPT-4V at this stage. Furthermore, text-plus-image input answers a higher rate in image-based questions. Our findings imply the usefulness and potential of GPT-4V in medicine; however, future consideration of safe use methods is needed.
Noda M
,Ueno T
,Koshu R
,Takaso Y
,Shimada MD
,Saito C
,Sugimoto H
,Fushiki H
,Ito M
,Nomura A
,Yoshizaki T
... -
《-》
Evaluating Large Language Models for the National Premedical Exam in India: Comparative Analysis of GPT-3.5, GPT-4, and Bard.
Large language models (LLMs) have revolutionized natural language processing with their ability to generate human-like text through extensive training on large data sets. These models, including Generative Pre-trained Transformers (GPT)-3.5 (OpenAI), GPT-4 (OpenAI), and Bard (Google LLC), find applications beyond natural language processing, attracting interest from academia and industry. Students are actively leveraging LLMs to enhance learning experiences and prepare for high-stakes exams, such as the National Eligibility cum Entrance Test (NEET) in India.
This comparative analysis aims to evaluate the performance of GPT-3.5, GPT-4, and Bard in answering NEET-2023 questions.
In this paper, we evaluated the performance of the 3 mainstream LLMs, namely GPT-3.5, GPT-4, and Google Bard, in answering questions related to the NEET-2023 exam. The questions of the NEET were provided to these artificial intelligence models, and the responses were recorded and compared against the correct answers from the official answer key. Consensus was used to evaluate the performance of all 3 models.
It was evident that GPT-4 passed the entrance test with flying colors (300/700, 42.9%), showcasing exceptional performance. On the other hand, GPT-3.5 managed to meet the qualifying criteria, but with a substantially lower score (145/700, 20.7%). However, Bard (115/700, 16.4%) failed to meet the qualifying criteria and did not pass the test. GPT-4 demonstrated consistent superiority over Bard and GPT-3.5 in all 3 subjects. Specifically, GPT-4 achieved accuracy rates of 73% (29/40) in physics, 44% (16/36) in chemistry, and 51% (50/99) in biology. Conversely, GPT-3.5 attained an accuracy rate of 45% (18/40) in physics, 33% (13/26) in chemistry, and 34% (34/99) in biology. The accuracy consensus metric showed that the matching responses between GPT-4 and Bard, as well as GPT-4 and GPT-3.5, had higher incidences of being correct, at 0.56 and 0.57, respectively, compared to the matching responses between Bard and GPT-3.5, which stood at 0.42. When all 3 models were considered together, their matching responses reached the highest accuracy consensus of 0.59.
The study's findings provide valuable insights into the performance of GPT-3.5, GPT-4, and Bard in answering NEET-2023 questions. GPT-4 emerged as the most accurate model, highlighting its potential for educational applications. Cross-checking responses across models may result in confusion as the compared models (as duos or a trio) tend to agree on only a little over half of the correct responses. Using GPT-4 as one of the compared models will result in higher accuracy consensus. The results underscore the suitability of LLMs for high-stakes exams and their positive impact on education. Additionally, the study establishes a benchmark for evaluating and enhancing LLMs' performance in educational tasks, promoting responsible and informed use of these models in diverse learning environments.
Farhat F
,Chaudhry BM
,Nadeem M
,Sohail SS
,Madsen DØ
... -
《-》