Improvement of surface stability of Zn anode by a cost-effective ErCl(3) additive for realizing high-performance aqueous zinc-ion batteries.
摘要:
Rechargeable aqueous-zinc ion batteries (AZIB) have notable benefits in terms of high safety and low cost. Nevertheless, the challenges, such as dendrite growth, zinc anode corrosion, and hydrogen evolution reaction, impede its practical implementation. Hence, this study proposes the introduction of an economical ErCl3 electrolyte additive to stabilize the Zn anode surface and address the aforementioned issues. The introduced Er3+ will cover the raised zinc dendrite surface and weaken the "tip effect" on the surface of the zinc anode via the "electrostatic shielding" effect. Simultaneously, the introduced Cl- can reduce the polarization of the zinc anode. Due to the synergistic effect of Er3+ and Cl-, the zinc anode corrosion, dendrite growth and hydrogen evolution have been efficiently inhibited. As a result, the Zn||Zn-symmetric battery using ErCl3 additive can stably cycle for 1100 h at 1 mA cm-2, 1 mAh cm-2, and exhibit a high average coulomb efficiency (99.2 %). Meanwhile, Zn||MnO2 full battery based on ErCl3-added electrolyte also demonstrates a high reversible capacity of 157.1 mAh/g after 500 cycles. Obviously, the capacity decay rate of the full battery is also improved, only 0.113 % per cycle. This study offers a straightforward and economically efficient method for stabilizing the zinc anode and realizing high-performance AZIBs.
收起
展开
DOI:
10.1016/j.jcis.2024.02.111
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(264)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无