Artificial intelligence in immunotherapy PET/SPECT imaging.

来自 PUBMED

作者:

McGale JPChen DLTrebeschi SFarwell MDWu AMCutler CSSchwartz LHDercle L

展开

摘要:

Immunotherapy has dramatically altered the therapeutic landscape for oncology, but more research is needed to identify patients who are likely to achieve durable clinical benefit and those who may develop unacceptable side effects. We investigated the role of artificial intelligence in PET/SPECT-guided approaches for immunotherapy-treated patients. We performed a scoping review of MEDLINE, CENTRAL, and Embase databases using key terms related to immunotherapy, PET/SPECT imaging, and AI/radiomics through October 12, 2022. Of the 217 studies identified in our literature search, 24 relevant articles were selected. The median (interquartile range) sample size of included patient cohorts was 63 (157). Primary tumors of interest were lung (n = 14/24, 58.3%), lymphoma (n = 4/24, 16.7%), or melanoma (n = 4/24, 16.7%). A total of 28 treatment regimens were employed, including anti-PD-(L)1 (n = 13/28, 46.4%) and anti-CTLA-4 (n = 4/28, 14.3%) monoclonal antibodies. Predictive models were built from imaging features using univariate radiomics (n = 7/24, 29.2%), radiomics (n = 12/24, 50.0%), or deep learning (n = 5/24, 20.8%) and were most often used to prognosticate (n = 6/24, 25.0%) or describe tumor phenotype (n = 5/24, 20.8%). Eighteen studies (75.0%) performed AI model validation. Preliminary results suggest broad potential for the application of AI-guided immunotherapy management after further validation of models on large, prospective, multicenter cohorts. This scoping review describes how artificial intelligence models are built to make predictions based on medical imaging and explores their application specifically in the PET and SPECT examination of immunotherapy-treated cancers. • Immunotherapy has drastically altered the cancer treatment landscape but is known to precipitate response patterns that are not accurately accounted for by traditional imaging methods. • There is an unmet need for better tools to not only facilitate in-treatment evaluation but also to predict, a priori, which patients are likely to achieve a good response with a certain treatment as well as those who are likely to develop side effects. • Artificial intelligence applied to PET/SPECT imaging of immunotherapy-treated patients is mainly used to make predictions about prognosis or tumor phenotype and is built from baseline, pre-treatment images. Further testing is required before a true transition to clinical application can be realized.

收起

展开

DOI:

10.1007/s00330-024-10637-3

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(114)

参考文献(38)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读