Exploring Generative Artificial Intelligence-Assisted Medical Education: Assessing Case-Based Learning for Medical Students.
The recent public release of generative artificial intelligence (GenAI) has brought fresh excitement by making access to GenAI for medical education easier than ever before. It is now incumbent upon both students and faculty to determine the optimal role of GenAI within the medical school curriculum. Given the promise and limitations of GenAI, this study aims to assess the current capabilities of a GenAI (Chat Generative Pre-trained Transformer, ChatGPT), specifically within the framework of a pre-clerkship case-based active learning curriculum. The role of GenAI is explored by evaluating its performance in generating educational materials, creating medical assessment questions, answering medical queries, and engaging in clinical reasoning by prompting it to respond to a problem-based learning scenario. Our results demonstrated that GenAI addressed epidemiology, diagnosis, and treatment questions well. However, there were still instances where it failed to provide comprehensive answers. Responses from GenAI might offer essential information, hint at the need for further inquiry, or sometimes omit critical details. GenAI struggled with generating information on complex topics, raising a significant concern when using it as a 'search engine' for medical student queries. This creates uncertainty for students regarding potentially missed critical information. With the increasing integration of GenAI into medical education, it is imperative for faculty to become well-versed in both its advantages and limitations. This awareness will enable them to educate students on using GenAI effectively in medical education.
Sauder M
,Tritsch T
,Rajput V
,Schwartz G
,Shoja MM
... -
《Cureus》
Generative artificial intelligence in healthcare from the perspective of digital media: Applications, opportunities and challenges.
The emergence and application of generative artificial intelligence/large language models (hereafter GenAI LLMs) have the potential for significant impact on the healthcare industry. However, there is currently a lack of systematic research on GenAI LLMs in healthcare based on reliable data. This article aims to conduct an exploratory study of the application of GenAI LLMs (i.e., ChatGPT) in healthcare from the perspective of digital media (i.e., online news), including the application scenarios, potential opportunities, and challenges.
This research used thematic qualitative text analysis in five steps: firstly, developing main topical categories based on relevant articles; secondly, encoding the search keywords using these categories; thirdly, conducting searches for news articles via Google ; fourthly, encoding the sub-categories using the elaborate category system; and finally, conducting category-based analysis and presenting the results. Natural language processing techniques, including the TermRaider and AntConc tool, were applied in the aforementioned steps to assist in text qualitative analysis. Additionally, this study built a framework, using for analyzing the above three topics, from the perspective of five different stakeholders, including healthcare demanders and providers.
This study summarizes 26 applications (e.g., provide medical advice, provide diagnosis and triage recommendations, provide mental health support, etc.), 21 opportunities (e.g., make healthcare more accessible, reduce healthcare costs, improve patients care, etc.), and 17 challenges (e.g., generate inaccurate/misleading/wrong answers, raise privacy concerns, lack of transparency, etc.), and analyzes the reasons for the formation of these key items and the links between the three research topics.
The application of GenAI LLMs in healthcare is primarily focused on transforming the way healthcare demanders access medical services (i.e., making it more intelligent, refined, and humane) and optimizing the processes through which healthcare providers offer medical services (i.e., simplifying, ensuring timeliness, and reducing errors). As the application becomes more widespread and deepens, GenAI LLMs is expected to have a revolutionary impact on traditional healthcare service models, but it also inevitably raises ethical and security concerns. Furthermore, GenAI LLMs applied in healthcare is still in the initial stage, which can be accelerated from a specific healthcare field (e.g., mental health) or a specific mechanism (e.g., GenAI LLMs' economic benefits allocation mechanism applied to healthcare) with empirical or clinical research.
Xu R
,Wang Z
《Heliyon》
An Ethical Perspective on the Democratization of Mental Health With Generative AI.
Knowledge has become more open and accessible to a large audience with the "democratization of information" facilitated by technology. This paper provides a sociohistorical perspective for the theme issue "Responsible Design, Integration, and Use of Generative AI in Mental Health." It evaluates ethical considerations in using generative artificial intelligence (GenAI) for the democratization of mental health knowledge and practice. It explores the historical context of democratizing information, transitioning from restricted access to widespread availability due to the internet, open-source movements, and most recently, GenAI technologies such as large language models. The paper highlights why GenAI technologies represent a new phase in the democratization movement, offering unparalleled access to highly advanced technology as well as information. In the realm of mental health, this requires delicate and nuanced ethical deliberation. Including GenAI in mental health may allow, among other things, improved accessibility to mental health care, personalized responses, and conceptual flexibility, and could facilitate a flattening of traditional hierarchies between health care providers and patients. At the same time, it also entails significant risks and challenges that must be carefully addressed. To navigate these complexities, the paper proposes a strategic questionnaire for assessing artificial intelligence-based mental health applications. This tool evaluates both the benefits and the risks, emphasizing the need for a balanced and ethical approach to GenAI integration in mental health. The paper calls for a cautious yet positive approach to GenAI in mental health, advocating for the active engagement of mental health professionals in guiding GenAI development. It emphasizes the importance of ensuring that GenAI advancements are not only technologically sound but also ethically grounded and patient-centered.
Elyoseph Z
,Gur T
,Haber Y
,Simon T
,Angert T
,Navon Y
,Tal A
,Asman O
... -
《JMIR Mental Health》