STK11 and KEAP1 mutations in non-small cell lung cancer patients: Descriptive analysis and prognostic value among Hispanics (STRIKE registry-CLICaP).
Mutations in STK11 (STK11Mut) and, frequently co-occurring, KEAP1 mutations (KEAP1Mut) are associated with poor survival in metastatic Non-small Cell Lung Cancer (mNSCLC) patients treated with immunotherapy. However, there are limited data regarding the prognostic or predictive significance of these genomic alterations among Hispanics.
This retrospective study analyzed a cohort of Hispanic patients (N = 103) diagnosed with mNSCLC from the US and seven Latin American countries (LATAM) treated with immune checkpoint inhibitors (ICI) alone or in combination as first-line (Cohort A). All cases were treated in routine care between January 2016 and December 2021. The main objectives were to determine the association of mutations in STK11 or KEAP1 in these patients' tumors with overall (OS) and progression-free survival (PFS), presence of KRAS mutations, tumor mutational burden (TMB), and other relevant clinical variables. To compare outcomes with a STK11Wt/KEAP1Wt population, historical data from a cohort of Hispanic patients (N = 101) treated with first-line ICI was used, matching both groups by country of origin, gender, and Programed Death-ligand 1 (PD-L1) expression level (Cohort B).
Most tumors had mutations only in STK11 or KEAP1 (45.6%) without KRAS co-mutation or any other genomic alteration. Besides, 35%, 8.7%, 6.8%, and 3.9% were KRASMut + STK11Mut, KRASMut + STK11Mut + KEAP1Mut, STK11Mut + KEAP1Mut, and KRASMut + KEAP1Mut, respectively. Based on KRAS status, STK11 alterations were associated with significantly lower PD-L1 expression among those with KRASWt (p = 0.023), whereas KEAP1 mutations were predominantly associated with lower PD-L1 expression among KRASMut cases (p = 0.047). Tumors with KRASMut + KEAP1Mut had significantly higher median TMB when compared to other tumors (p = 0.040). For Cohort A, median PFS was 4.9 months (95%CI 4.3-5.4), slightly longer in those with KEAP1mut 6.1 months versus STK11Mut 4.7 months (p = 0.38). In the same cohort, PD-L1 expression and TMB did not influence PFS. OS was significantly longer among patients with tumors with PD-L1 ≥ 50% (30.9 months), and different from those with PD-L1 1-49% (22.0 months), and PD-L1 < 1% (12.0 months) (p = 0.0001). When we compared the cohorts A and B, OS was significantly shorter for patients carrying STK1 [STK11Mut 14.2 months versus STK11Wt 27.0 months (p = 0.0001)] or KEAP1 [KEAP1Mut 12.0 months versus KEAP1Wt 24.4 months (p = 0.005)] mutations. PD-L1 expression significantly affected OS independently of the presence of mutations in STK11, KEAP1, or KRAS. TMB-H favored better OS.
This is the first large Hispanic cohort to study the impact of STK11 and KEAP1 mutations in NSCLC patient treated with ICI. Our data suggest that mutations in the above-mentioned genes are associated with PD-L1 expression levels and poor OS.
Cordeiro de Lima VC
,Corassa M
,Saldanha E
,Freitas H
,Arrieta O
,Raez L
,Samtani S
,Ramos M
,Rojas C
,Burotto M
,Chamorro DF
,Recondo G
,Ruiz-Patiño A
,Más L
,Zatarain-Barrón L
,Mejía S
,Nicolas Minata J
,Martín C
,Bautista Blaquier J
,Motta Guerrero R
,Aliaga-Macha C
,Carracedo C
,Ordóñez-Reyes C
,Garcia-Robledo JE
,Corrales L
,Sotelo C
,Ricaurte L
,Santoyo N
,Cuello M
,Jaller E
,Rodríguez J
,Archila P
,Bermudez M
,Gamez T
,Russo A
,Viola L
,Malapelle U
,de Miguel Perez D
,Rolfo C
,Rosell R
,Cardona AF
... -
《-》
Integration of comprehensive genomic profiling, tumor mutational burden, and PD-L1 expression to identify novel biomarkers of immunotherapy in non-small cell lung cancer.
This study aimed to explore the novel biomarkers for immune checkpoint inhibitor (ICI) responses in non-small cell lung cancer (NSCLC) by integrating genomic profiling, tumor mutational burden (TMB), and expression of programmed death receptor 1 ligand (PD-L1).
Tumor and blood samples from 637 Chinese patients with NSCLC were collected for targeted panel sequencing. Genomic alterations, including single nucleotide variations, insertions/deletions, copy number variations, and gene rearrangements, were assessed and TMB was computed. TMB-high (TMB-H) was defined as ≥10 mutations/Mb. PD-L1 positivity was defined as ≥1% tumor cells with membranous staining. Genomic data and ICI outcomes of 240 patients with NSCLC were derived from cBioPortal.
EGFR-sensitizing mutations, ALK, RET, and ROS1 rearrangements were associated with lower TMB and PD-L1+/TMB-H proportions, whereas KRAS, ALK, RET, and ROS1 substitutions/indels correlated with higher TMB and PD-L1+/TMB-H proportions than wild-type genotypes. Histone-lysine N-methyltransferase 2 (KMT2) family members (KMT2A, KMT2C, and KMT2D) were frequently mutated in NSCLC tumors, and these mutations were associated with higher TMB and PD-L1 expression, as well as higher PD-L1+/TMB-H proportions. Specifically, patients with KMT2C mutations had higher TMB and PD-L1+/TMB-H proportions than wild-type patients. The median progression-free survival (PFS) was 5.47 months (95% CI 2.5-NA) in patients with KMT2C mutations versus 3.17 months (95% CI 2.6-4.27) in wild-type patients (p = 0.058). Furthermore, in patients with NSCLC who underwent ICI treatment, patients with TP53/KMT2C co-mutations had significantly longer PFS and greater durable clinical benefit (HR: 0.48, 95% CI: 0.24-0.94, p = 0.033). TP53 mutation combined with KMT2C or KRAS mutation was a better biomarker with expanded population benefit from ICIs therapy and increased the predictive power (HR: 0.46, 95% CI: 0.26-0.81, p = 0.007).
We found that tumors with different alterations in actionable target genes had variable expression of PD-L1 and TMB in NSCLC. TP53/KMT2C co-mutation might serve as a predictive biomarker for ICI responses in NSCLC.
Cancer immunotherapies, especially immune checkpoint inhibitors (ICIs), have revolutionized the treatment of non-small cell lung cancer (NSCLC); however, only a proportion of patients derive durable responses to this treatment. Biomarkers with greater accuracy are highly needed. In total, 637 Chinese patients with NSCLC were analyzed using next-generation sequencing and IHC to characterize the unique features of genomic alterations and TMB and PD-L1 expression. Our study demonstrated that KMT2C/TP53 co-mutation might be an accurate, cost-effective, and reliable biomarker to predict responses to PD-1 blockade therapy in NSCLC patients and that adding KRAS to the biomarker combination creates a more robust parameter to identify the best responders to ICI therapy.
Shi Y
,Lei Y
,Liu L
,Zhang S
,Wang W
,Zhao J
,Zhao S
,Dong X
,Yao M
,Wang K
,Zhou Q
... -
《Cancer Medicine》