LipiFlow for the treatment of dry eye disease.
Meibomian gland dysfunction (MGD) is the most common underlying cause of dry eye disease (DED). MGD leads to pathological alteration of the composition or quantity of meibum, or both, which subsequently results in tear evaporation and the typical signs and symptoms associated with DED. The LipiFlow Thermal Pulsation System (LipiFlow) is a medical device used to treat MGD in office; however, it is unclear if LipiFlow can outperform other DED treatments.
To evaluate the effectiveness of LipiFlow for treating DED signs and symptoms and the safety of LipiFlow compared with sham or other available treatments for MGD in adults.
The Cochrane Eyes and Vision Information Specialist searched the electronic databases for randomized controlled trials. There were no restrictions on language or date of publication. We searched the Cochrane Central Register of Controlled Trials (CENTRAL, including the Cochrane Eyes and Vision Trials Register; 2022, Issue 6), MEDLINE Ovid, Embase.com, PubMed, LILACS (Latin American and Caribbean Health Science Information database), ClinicalTrials.gov, and World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) electronic databases. We also examined the reference lists of identified trials, review articles, and guidelines for information about relevant trials that may not have been identified by our search strategy. We contacted investigators regarding ongoing trials. The last database search was performed on 24 October 2022.
We included studies conducted in adults (over 18 years of age) with DED or MGD as defined by the primary trial investigators. We imposed no restrictions on race, ethnicity, or sex. We considered trials involving contact lens wearers if they were equally represented between groups.
We applied standard Cochrane methodology.
We included 13 trials that randomized a total of 1155 participants (28 to 236 participants randomized per study). Six trials were conducted in the USA, three in China, two in Thailand, one in France, and one in Italy. Eight trials were of single-center design, while four trials were of multicenter design; one trial did not report the number of participating centers. Study characteristics The study population of the included trials was 66% female (range 48% to 80%), with an age range of 19 to 86 years. LipiFlow, used as a stand-alone intervention, was compared with basic warm compresses in five studies, thermostatic device in five studies, oral intervention in one trial, and topical dry eye medications in one trial. LipiFlow was also evaluated together with eyelid hygiene product versus eyelid hygiene products alone in one trial. Findings Five trials compared LipiFlow with a basic warm compress applied for varying durations and frequencies during the trial period; only one of these trials combined a warm compress with eyelid massage. Analyzing symptom scores by different questionnaires (Ocular Surface Disease Index [OSDI] and Standard Patient Evaluation of Eye Dryness [SPEED]) yielded conflicting evidence of a difference in symptoms between LipiFlow and basic warm compresses after four weeks. There was no evidence of a difference in meibomian gland expression, meibum quality, or tear breakup time when comparing LipiFlow with basic warm compresses. Another five trials compared LipiFlow with thermostatic devices. Analysis of symptom scores at four weeks showed that thermostatic devices had reduced OSDI scores by a mean difference (MD) of 4.59 (95% confidence interval [CI] 1.23 to 7.95; I2 = 0, P = 0.007; 553 participants; very low certainty evidence) as compared with LipiFlow. When we compared LipiFlow plus eyelid hygiene with eyelid hygiene alone, there was no evidence of difference in signs or symptoms at any time point evaluated. Only one trial compared LipiFlow with a topical DED medication (lifitegrast 5%). The single-trial estimate suggested that 5% lifitegrast may increase meibomian gland expression scores compared with LipiFlow at day 42 (MD -1.21, 95% CI -2.37 to -0.05; 50 participants; low certainty evidence) by using a meibomian gland expression scale of 0 to 8. One trial compared LipiFlow with an oral intervention (doxycycline), finding that LipiFlow may result in significantly better SPEED scores than doxycycline at three months (MD -4.00, 95% CI -7.33 to -0.67; 24 participants; very low certainty evidence). No other significant differences in signs or symptoms were found between LipiFlow and doxycycline at three months. We did not find any other statistically significant differences in symptoms or signs for any other analysis performed in this review at the one- to four-week time point. Adverse events No trial reported any intervention-related, vision-threatening adverse events.
LipiFlow performs similarly to other commonly used DED treatments with regard to DED signs and symptoms. The best available evidence was deemed to have a high level of bias, leading to low or very low certainty evidence. Additional research with adequate masking, a standardized testing methodology, and a sample representative of the MGD population is therefore needed before any firm conclusions can be drawn regarding comparative benefits and harms.
Pucker AD
,Yim TW
,Rueff E
,Ngo W
,Tichenor AA
,Conto JE
... -
《Cochrane Database of Systematic Reviews》
Tamoxifen for adults with hepatocellular carcinoma.
Hepatocellular carcinoma is the most common type of liver cancer, accounting for 70% to 85% of individuals with primary liver cancer. Tamoxifen has been evaluated in randomised clinical trials in people with hepatocellular cancer. The reported results have been inconsistent.
To evaluate the benefits and harms of tamoxifen or tamoxifen plus any other anticancer drugs compared with no intervention, placebo, any type of standard care, or alternative treatment in adults with hepatocellular carcinoma, irrespective of sex, administered dose, type of formulation, and duration of treatment.
We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and major trials registries, and handsearched reference lists up to 26 March 2024.
Parallel-group randomised clinical trials including adults (aged 18 years and above) diagnosed with advanced or unresectable hepatocellular carcinoma. Had we found cross-over trials, we would have included only the first trial phase. We did not consider data from quasi-randomised trials for analysis.
Our critical outcomes were all-cause mortality, serious adverse events, and health-related quality of life. Our important outcomes were disease progression, and adverse events considered non-serious.
We assessed risk of bias using the RoB 2 tool.
We used standard Cochrane methods and Review Manager. We meta-analysed the outcome data at the longest follow-up. We presented the results of dichotomous outcomes as risk ratios (RR) and continuous data as mean difference (MD), with 95% confidence intervals (CI) using the random-effects model. We summarised the certainty of evidence using GRADE.
We included 10 trials that randomised 1715 participants with advanced, unresectable, or terminal stage hepatocellular carcinoma. Six were single-centre trials conducted in Hong Kong, Italy, and Spain, while three were conducted as multicentre trials in single countries (France, Italy, and Spain), and one trial was conducted in nine countries in the Asia-Pacific region (Australia, Hong Kong, Indonesia, Malaysia, Myanmar, New Zealand, Singapore, South Korea, and Thailand). The experimental intervention was tamoxifen in all trials. The control interventions were no intervention (three trials), placebo (six trials), and symptomatic treatment (one trial). Co-interventions were best supportive care (three trials) and standard care (one trial). The remaining six trials did not provide this information. The number of participants in the trials ranged from 22 to 496 (median 99), mean age was 63.7 (standard deviation 4.18) years, and mean proportion of men was 74.7% (standard deviation 42%). Follow-up was three months to five years.
Ten trials evaluated oral tamoxifen at five different dosages (ranging from 20 mg per day to 120 mg per day). All trials investigated one or more of our outcomes. We performed meta-analyses when at least two trials assessed similar types of tamoxifen versus similar control interventions. Eight trials evaluated all-cause mortality at varied follow-up points. Tamoxifen versus the control interventions (i.e. no treatment, placebo, and symptomatic treatment) results in little to no difference in mortality between one and five years (RR 0.99, 95% CI 0.92 to 1.06; 8 trials, 1364 participants; low-certainty evidence). In total, 488/682 (71.5%) participants died in the tamoxifen groups versus 487/682 (71.4%) in the control groups. The separate analysis results for one, between two and three, and five years were comparable to the analysis result for all follow-up periods taken together. The evidence is very uncertain about the effect of tamoxifen versus no treatment on serious adverse events at one-year follow-up (RR 0.44, 95% CI 0.19 to 1.06; 1 trial, 36 participants; very low-certainty evidence). A total of 5/20 (25.0%) participants in the tamoxifen group versus 9/16 (56.3%) participants in the control group experienced serious adverse events. One trial measured health-related quality of life at baseline and at nine months' follow-up, using the Spitzer Quality of Life Index. The evidence is very uncertain about the effect of tamoxifen versus no treatment on health-related quality of life (MD 0.03, 95% CI -0.45 to 0.51; 1 trial, 420 participants; very low-certainty evidence). A second trial found no appreciable difference in global health-related quality of life scores. No further data were provided. Tamoxifen versus control interventions (i.e. no treatment, placebo, or symptomatic treatment) results in little to no difference in disease progression between one and five years' follow-up (RR 1.02, 95% CI 0.91 to 1.14; 4 trials, 720 participants; low-certainty evidence). A total of 191/358 (53.3%) participants in the tamoxifen group versus 198/362 (54.7%) participants in the control group had progression of hepatocellular carcinoma. Tamoxifen versus control interventions (i.e. no treatment or placebo) may have little to no effect on adverse events considered non-serious during treatment, but the evidence is very uncertain (RR 1.17, 95% CI 0.45 to 3.06; 4 trials, 462 participants; very low-certainty evidence). A total of 10/265 (3.8%) participants in the tamoxifen group versus 6/197 (3.0%) participants in the control group had adverse events considered non-serious. We identified no trials with participants diagnosed with early stages of hepatocellular carcinoma. We identified no ongoing trials.
Based on the low- and very low-certainty evidence, the effects of tamoxifen on all-cause mortality, disease progression, serious adverse events, health-related quality of life, and adverse events considered non-serious in adults with advanced, unresectable, or terminal stage hepatocellular carcinoma when compared with no intervention, placebo, or symptomatic treatment could not be established. Our findings are mostly based on trials at high risk of bias with insufficient power (fewer than 100 participants), and a lack of trial data on clinically important outcomes. Therefore, firm conclusions cannot be drawn. Trials comparing tamoxifen administered with any other anticancer drug versus standard care, usual care, or alternative treatment as control interventions were lacking. Evidence on the benefits and harms of tamoxifen in participants at the early stages of hepatocellular carcinoma was also lacking.
This Cochrane review had no dedicated funding.
Protocol available via DOI: 10.1002/14651858.CD014869.
Naing C
,Ni H
,Aung HH
《Cochrane Database of Systematic Reviews》
Treatment for women with postpartum iron deficiency anaemia.
Postpartum iron deficiency anaemia is caused by antenatal iron deficiency or excessive blood loss at delivery and might affect up to 50% of labouring women in low- and middle-income countries. Effective and safe treatment during early motherhood is important for maternal well-being and newborn care. Treatment options include oral iron supplementation, intravenous iron, erythropoietin, and red blood cell transfusion.
To assess the benefits and harms of the available treatment modalities for women with postpartum iron deficiency anaemia. These include intravenous iron, oral iron supplementation, red blood cell transfusion, and erythropoietin.
A Cochrane Information Specialist searched for all published, unpublished, and ongoing trials, without language or publication status restrictions. We searched databases including CENTRAL, MEDLINE, Embase, CINAHL, LILACS, WHO ICTRP, and ClinicalTrials.gov, together with reference checking, citation searching, and contact with study authors to identify eligible studies. We applied date limits to retrieve new records since the last search on 9 April 2015 until 11 April 2024.
We included published, unpublished, and ongoing randomised controlled trials (RCTs) that compared treatments for postpartum iron deficiency anaemia with placebo, no treatment, or alternative treatments. Cluster-randomised trials were eligible for inclusion. We included RCTs regardless of blinding. Participants were women with postpartum haemoglobin ≤ 12 g/dL, treated within six weeks after childbirth. We excluded non-randomised, quasi-randomised, and cross-over trials.
The critical outcomes of this review were maternal mortality and fatigue. The important outcomes included persistent anaemia symptoms, persistent postpartum anaemia, psychological well-being, infections, compliance with treatment, breastfeeding, length of hospital stay, serious adverse events, anaphylaxis or evidence of hypersensitivity, flushing/Fishbane reaction, injection discomfort/reaction, constipation, gastrointestinal pain, number of red blood cell transfusions, and haemoglobin levels.
We assessed risk of bias in the included studies using the Cochrane RoB 1 tool.
Two review authors independently performed study screening, risk of bias assessment, and data extraction. We contacted trial authors for supplementary data when necessary. We screened all trials for trustworthiness and scientific integrity using the Cochrane Trustworthiness Screening Tool. We conducted meta-analyses using a fixed-effect model whenever feasible to synthesise outcomes. In cases where data were not suitable for meta-analysis, we provided a narrative summary of important findings. We evaluated the overall certainty of the evidence using GRADE.
We included 33 RCTs with a total of 4558 postpartum women. Most trials were at high risk of bias for several risk of bias domains.
Most of the evidence was of low or very low certainty. Imprecision due to few events and risk of bias due to lack of blinding were the most important factors. Intravenous iron versus oral iron supplementation The evidence is very uncertain about the effect of intravenous iron on mortality (risk ratio (RR) 2.95, 95% confidence interval (CI) 0.12 to 71.96; P = 0.51; I² = not applicable; 3 RCTs; 1 event; 572 women; very low-certainty evidence). One woman died of cardiomyopathy, and another developed arrhythmia, both in the groups treated with intravenous iron. Intravenous iron probably results in a slight reduction in fatigue within 8 to 28 days (standardised mean difference -0.25, 95% CI -0.42 to -0.07; P = 0.006; I² = 47%; 2 RCTs; 515 women; moderate-certainty evidence). Breastfeeding was not reported. Oral iron probably increases the risk of constipation compared to intravenous iron (RR 0.12, 95% CI 0.06 to 0.21; P < 0.001; I² = 0%; 10 RCTs; 1798 women; moderate-certainty evidence). The evidence is very uncertain about the effect of intravenous iron on anaphylaxis or hypersensitivity (RR 2.77, 95% CI 0.31 to 24.86; P = 0.36; I² = 0%; 12 RCTs; 2195 women; very low-certainty evidence). Three women treated with intravenous iron experienced anaphylaxis or hypersensitivity. The trials that reported on haemoglobin at 8 to 28 days were too heterogeneous to pool. However, 5 of 6 RCTs favoured intravenous iron, with mean changes in haemoglobin ranging from 0.73 to 2.10 g/dL (low-certainty evidence). Red blood cell transfusion versus intravenous iron No women died in the only trial that reported on mortality (1 RCT; 7 women; very low-certainty evidence). The evidence is very uncertain about the effect of red blood cell transfusion on fatigue at 8 to 28 days (mean difference (MD) 1.20, 95% CI -2.41 to 4.81; P = 0.51; I² = not applicable; 1 RCT; 13 women; very low-certainty evidence) and breastfeeding more than six weeks postpartum (RR 0.43, 95% CI 0.12 to 1.57; P = 0.20; I² = not applicable; 1 RCT; 13 women; very low-certainty evidence). Constipation and anaphylaxis were not reported. Red blood cell transfusion may result in little to no difference in haemoglobin within 8 to 28 days (MD -1.00, 95% CI -2.02 to 0.02; P = 0.05; I² = not applicable; 1 RCT; 12 women; low-certainty evidence). Intravenous iron and oral iron supplementation versus oral iron supplementation Mortality and breastfeeding were not reported. One trial reported a greater improvement in fatigue in the intravenous and oral iron group, but the effect size could not be calculated (1 RCT; 128 women; very low-certainty evidence). Intravenous iron and oral iron may result in a reduction in constipation compared to oral iron alone (RR 0.21, 95% CI 0.07 to 0.69; P = 0.01; I² = not applicable; 1 RCT; 128 women; low-certainty evidence). There were no anaphylaxis or hypersensitivity events in the trials (2 RCTs; 168 women; very low-certainty evidence). Intravenous iron and oral iron may result in little to no difference in haemoglobin (g/dL) at 8 to 28 days (MD 0.00, 95% CI -0.48 to 0.48; P = 1.00; I² = not applicable; 1 RCT; 60 women; low-certainty evidence). Red blood cell transfusion versus no transfusion Mortality, fatigue at day 8 to 28, constipation, anaphylaxis, and haemoglobin were not reported. Red blood cell transfusion may result in little to no difference in breastfeeding more than six weeks postpartum (RR 0.91, 95% CI 0.78 to 1.07; P = 0.24; I² = not applicable; 1 RCT; 297 women; low-certainty evidence). Oral iron supplementation versus placebo or no treatment Mortality, fatigue, breastfeeding, constipation, anaphylaxis, and haemoglobin were not reported. Two trials reported on gastrointestinal symptoms, but did not report results by study arm.
Intravenous iron probably reduces fatigue slightly in the early postpartum weeks (8 to 28 days) compared to oral iron tablets, but probably results in little to no difference after four weeks. It is very uncertain if intravenous iron has an effect on mortality and anaphylaxis/hypersensitivity. Breastfeeding was not reported. Intravenous iron may increase haemoglobin slightly more than iron tablets, but the data were too heterogeneous to pool. However, changes in haemoglobin levels are a surrogate outcome, and treatment decisions should preferentially be based on patient-relevant outcomes. Iron tablets probably result in a large increase in constipation compared to intravenous iron. The effect of red blood cell transfusion compared to intravenous iron on mortality, fatigue, and breastfeeding is very uncertain. No studies reported on constipation or anaphylaxis/hypersensitivity. Red blood cell transfusion may result in little to no difference in haemoglobin at 8 to 28 days. The effect of intravenous iron and oral iron supplementation on mortality, fatigue, breastfeeding, and anaphylaxis/hypersensitivity is very uncertain or unreported. Intravenous iron and oral iron may result in a reduction in constipation compared to oral iron alone, and in little to no difference in haemoglobin. The effect of red blood cell transfusion compared to non-transfusion on mortality, fatigue, constipation, anaphylaxis/hypersensitivity, and haemoglobin is unreported. Red blood cell transfusion may result in little to no difference in breastfeeding. The effect of oral iron supplementation on mortality, fatigue, breastfeeding, constipation, anaphylaxis/hypersensitivity, and haemoglobin is unreported.
This Cochrane review had no dedicated funding.
Protocol and previous versions are available: Protocol (2013) [DOI: 10.1002/14651858.CD010861] Original review (2004) [DOI: 10.1002/14651858.CD004222.pub2] Review update (2015) [DOI: 10.1002/14651858.CD010861.pub2].
Jensen MCH
,Holm C
,Jørgensen KJ
,Schroll JB
... -
《Cochrane Database of Systematic Reviews》