Development of a machine learning-based radiomics signature for estimating breast cancer TME phenotypes and predicting anti-PD-1/PD-L1 immunotherapy response.

来自 PUBMED

作者:

Han XGuo YYe HChen ZHu QWei XLiu ZLiang C

展开

摘要:

Since breast cancer patients respond diversely to immunotherapy, there is an urgent need to explore novel biomarkers to precisely predict clinical responses and enhance therapeutic efficacy. The purpose of our present research was to construct and independently validate a biomarker of tumor microenvironment (TME) phenotypes via a machine learning-based radiomics way. The interrelationship between the biomarker, TME phenotypes and recipients' clinical response was also revealed. In this retrospective multi-cohort investigation, five separate cohorts of breast cancer patients were recruited to measure breast cancer TME phenotypes via a radiomics signature, which was constructed and validated by integrating RNA-seq data with DCE-MRI images for predicting immunotherapy response. Initially, we constructed TME phenotypes using RNA-seq of 1089 breast cancer patients in the TCGA database. Then, parallel DCE-MRI images and RNA-seq of 94 breast cancer patients obtained from TCIA were applied to develop a radiomics-based TME phenotypes signature using random forest in machine learning. The repeatability of the radiomics signature was then validated in an internal validation set. Two additional independent external validation sets were analyzed to reassess this signature. The Immune phenotype cohort (n = 158) was divided based on CD8 cell infiltration into immune-inflamed and immune-desert phenotypes; these data were utilized to examine the relationship between the immune phenotypes and this signature. Finally, we utilized an Immunotherapy-treated cohort with 77 cases who received anti-PD-1/PD-L1 treatment to evaluate the predictive efficiency of this signature in terms of clinical outcomes. The TME phenotypes of breast cancer were separated into two heterogeneous clusters: Cluster A, an "immune-inflamed" cluster, containing substantial innate and adaptive immune cell infiltration, and Cluster B, an "immune-desert" cluster, with modest TME cell infiltration. We constructed a radiomics signature for the TME phenotypes ([AUC] = 0.855; 95% CI 0.777-0.932; p < 0.05) and verified it in an internal validation set (0.844; 0.606-1; p < 0.05). In the known immune phenotypes cohort, the signature can identify either immune-inflamed or immune-desert tumor (0.814; 0.717-0.911; p < 0.05). In the Immunotherapy-treated cohort, patients with objective response had higher baseline radiomics scores than those with stable or progressing disease (p < 0.05); moreover, the radiomics signature achieved an AUC of 0.784 (0.643-0.926; p < 0.05) for predicting immunotherapy response. Our imaging biomarker, a practicable radiomics signature, is beneficial for predicting the TME phenotypes and clinical response in anti-PD-1/PD-L1-treated breast cancer patients. It is particularly effective in identifying the "immune-desert" phenotype and may aid in its transformation into an "immune-inflamed" phenotype.

收起

展开

DOI:

10.1186/s13058-024-01776-y

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(48)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读