-
Causal associations between gut microbiota with intervertebral disk degeneration, low back pain, and sciatica: a Mendelian randomization study.
Although studies have suggested that gut microbiota may be associated with intervertebral disk disease, their causal relationship is unclear. This study aimed to investigate the causal relationship between the gut microbiota and its metabolic pathways with the risk of intervertebral disk degeneration (IVDD), low back pain (LBP), and sciatica.
Genetic variation data for 211 gut microbiota taxa at the phylum to genus level were obtained from the MiBioGen consortium. Genetic variation data for 105 taxa at the species level and 205 metabolic pathways were obtained from the Dutch Microbiome Project. Genetic variation data for disease outcomes were obtained from the FinnGen consortium. The causal relationships between the gut microbiota and its metabolic pathways and the risk of IVDD, LBP, and sciatica were evaluated via Mendelian randomization (MR). The robustness of the results was assessed through sensitivity analysis.
Inverse variance weighting identified 46 taxa and 33 metabolic pathways that were causally related to IVDD, LBP, and sciatica. After correction by weighted median and MR-PRESSO, 15 taxa and nine pathways remained stable. After FDR correction, only the effect of the genus_Eubacterium coprostanoligenes group on IVDD remained stable. Sensitivity analyses showed no evidence of horizontal pleiotropy, heterogeneity, or reverse causation.
Some microbial taxa and their metabolic pathways are causally related to IVDD, LBP, and sciatica and may serve as potential intervention targets. This study provides new insights into the mechanisms of gut microbiota-mediated development of intervertebral disk disease.
Fang M
,Liu W
,Wang Z
,Li J
,Hu S
,Li Z
,Chen W
,Zhang N
... -
《-》
-
Gut microbiota and intervertebral disc degeneration: a bidirectional two-sample Mendelian randomization study.
Although previous studies have suggested a close association between gut microbiota (GM) and intervertebral disc degeneration (IVDD), the causal relationship between them remains unclear. Hence, we thoroughly investigate their causal relationship by means of a two-sample Mendelian randomization (MR) study, aiming to determine the impact of gut microbiota on the risk of developing intervertebral disc degeneration.
Summary data from genome-wide association studies of GM (the MiBioGen) and IVDD (the FinnGen biobank) have been acquired. The inverse variance weighted (IVW) method was utilized as the primary MR analysis approach. Weighted median, MR-Egger regression, weighted mode, and simple mode were used as supplements. The Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were performed to assess horizontal pleiotropy. Cochran's Q test evaluated heterogeneity. Leave-one-out sensitivity analysis was further conducted to determine the reliability of the causal relationship. A reverse MR analysis was conducted to assess potential reverse causation.
We identified nine gut microbial taxa that were causally associated with IVDD (P < 0.05). Following the Benjamini-Hochberg corrected test, the association between the phylum Bacteroidetes and a higher risk of IVDD remained significant (IVW FDR-corrected P = 0.0365). The results of the Cochrane Q test did not indicate heterogeneity (P > 0.05). Additionally, both the MR-Egger intercept test and the MR-PRESSO global test revealed that our results were not influenced by horizontal pleiotropy (P > 0.05). Furthermore, the leave-one-out analysis substantiated the reliability of the causal relationship. In the reverse analysis, no evidence was found to suggest that IVDD has an impact on the gut microbiota.
Our results validate the potential causal impact of particular GM taxa on IVDD, thus providing fresh insights into the gut microbiota-mediated mechanism of IVDD and laying the groundwork for further research into targeted preventive measures.
Geng Z
,Wang J
,Chen G
,Liu J
,Lan J
,Zhang Z
,Miao J
... -
《Journal of Orthopaedic Surgery and Research》
-
Causal effects of skin microbiota on intervertebral disk degeneration, low back pain and sciatica: a two-sample Mendelian randomization study.
The purpose of this study is to use two-sample Mendelian randomization (MR) to investigate the causal relationship between skin microbiota, especially Propionibacterium acnes, and intervertebral disc degeneration (IVDD), low back pain (LBP) and sciatica.
We conducted a two-sample MR using the aggregated data from the whole genome-wide association studies (GWAS). 150 skin microbiota were derived from the GWAS catalog and IVDD, LBP and sciatica were obtained from the IEU Open GWAS project. Inverse-variance weighted (IVW) was the primary research method, with MR-Egger and Weighted median as supplementary methods. Perform sensitivity analysis and reverse MR analysis on all MR results and use multivariate MR to adjust for confounding factors.
MR revealed five skin microbiota associated with IVDD, four associated with LBP, and two with sciatica. Specifically, P.acnes in sebaceous skin environments were associated with reduced risk of IVDD; IVDD was found to increase the abundance of P.acnes in moist skin. Furthermore, ASV010 [Staphylococcus (unc.)] from dry skin was a risk factor for LBP and sciatica; ASV045 [Acinetobacter (unc.)] from dry skin and Genus Rothia from dry skin exhibited potential protective effects against LBP; ASV065 [Finegoldia (unc.)] from dry skin was a protective factor for IVDD and LBP. ASV054 [Enhydrobacter (unc.)] from moist skin, Genus Bacteroides from dry skin and Genus Kocuria from dry skin were identified as being associated with an increased risk of IVDD. Genus Streptococcus from moist skin was considered to be associated with an increased risk of sciatica.
This study identified a potential causal relationship between skin microbiota and IVDD, LBP, and sciatica. No evidence suggests skin-derived P.acnes is a risk factor for IVDD, LBP and sciatica. At the same time, IVDD can potentially cause an increase in P.acnes abundance, which supports the contamination theory.
Jia Y
,Chen H
,Huang S
,Huo Z
,Xu B
... -
《Journal of Orthopaedic Surgery and Research》
-
Association between lipid-lowering agents with intervertebral disc degeneration, sciatica and low back pain: a drug-targeted mendelian randomized study and cross-sectional observation.
Abnormal lipid metabolism is linked to intervertebral disc degeneration (IVDD), sciatica, and low back pain (LBP), but it remains unclear whether targeted interventions can prevent these issues. This study investigated the causal effects of lipid-lowering drug use on IVDD, sciatica, and LBP development.
Single-nucleotide polymorphisms (SNPs) linked to total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-C), and non-high-density-lipoprotein cholesterol (non-HDL-C) were obtained from the Global Lipids Genetics Consortium's genome-wide association study (GWAS). Genes near HMGCR, PCSK9, and NPC1L1 were selected to represent therapeutic inhibition targets. Using Mendelian randomization (MR) focusing on these drug targets, we identified causal effects of PCSK9, HMGCR, and NPC1L1 on the risk of developing IVDD, sciatica, and LBP, with coronary heart disease risk serving as a positive control. Using summary data from Mendelian randomization (SMR) analysis, we evaluated potential therapeutic targets for IVDD, sciatica, and LBP through protein quantitative trait loci (pQTL). The genetic associations with IVDD, sciatica, LBP, and coronary heart disease were derived from FinnGen (discovery) and UK Biobank (replication). Additionally, a cross-sectional observational study was performed using data from the National Health and Nutrition Examination Survey (NHANES) to further investigate the connection between LBP and statin use, with a sample size of 4343 participants. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to assess the outcomes.
The NHANES-based cross-sectional study indicated that non-statin use was associated with an increased risk of developing LBP (OR = 1.29, 95% CI [1.04, 1.59], P = 0.019). Moreover, Inverse-variance weighting (IVW) analysis revealed that NPC1L1-mediated reductions in TC, LDL-C, and non-HDL-C concentrations were associated with a decreased risk of developing IVDD (P = 9.956E-03; P = 3.516E-02; P = 1.253E-04). Similarly, PCSK9-mediated reductions in LDL-C and TC concentrations were linked to a lower risk of developing sciatica (P = 3.825E-02; P = 2.709E-02). Sensitivity analysis confirmed the stability and reliability of the MR results. MST1 (macrophage stimulating 1) levels was inversely associated with IVDD, sciatica, and LBP risks.
The results of cross-sectional study suggested that non-use of statins was positively correlated with LBP. The results of Mendelian randomization study suggest that NPC1L1 could lower the risk of developing IVDD by reducing TC, LDL-C, and non-HDL-C levels. Additionally, PCSK9 may reduce the risk of developing sciatica by lowering LDL-C and TC levels. In contrast, HMGCR appears to have no significant effect on IVDD, sciatica, or LBP development. Nonetheless, further research is needed to verify these preliminary results. MST1 warrants further exploration as a potential therapeutic target. It is necessary to do further research to validate these findings.
Liu C
,Chu X
,Biao Y
,Jin Q
,Zhang Y
,Gao Y
,Feng S
,Ma J
,Zhang Y
... -
《Lipids in Health and Disease》
-
Causal association of leisure sedentary behavior and cervical spondylosis, sciatica, intervertebral disk disorders, and low back pain: a Mendelian randomization study.
Some studies suggest sedentary behavior is a risk factor for musculoskeletal disorders. This study aimed to investigate the potential causal association between leisure sedentary behavior (LSB) (including television (TV) viewing, computer use, and driving) and the incidence of sciatica, intervertebral disk degeneration (IVDD), low back pain (LBP), and cervical spondylosis (CS).
We obtained the data of LSB, CS, IVDD, LBP, sciatica and proposed mediators from the gene-wide association studies (GWAS). The causal effects were examined by Inverse Variance Weighted (IVW) test, MR-Egger, weighted median, weighted mode and simple mode. And sensitivity analysis was performed using MR-Pleiotropy Residual Sum and Outlier (MR-PRESSO) and MR-Egger intercept test. Multivariable MR (MVMR) was conducted to investigate the independent factor of other LSB; while two-step MR analysis was used to explore the potential mediators including Body mass index (BMI), smoking initiation, type 2 diabetes mellitus (T2DM), major depressive disorder (MDD), schizophrenia, bipolar disorder between the causal association of LSB and these diseases based on previous studies.
Genetically associated TV viewing was positively associated with the risk of CS (OR = 1.61, 95%CI = 1.25 to 2.07, p = 0.002), IVDD (OR = 2.10, 95%CI = 1.77 to 2.48, p = 3.79 × 10-18), LBP (OR = 1.84, 95%CI = 1.53 to 2.21, p = 1.04 × 10-10) and sciatica (OR = 1.82, 95% CI = 1.45 to 2.27, p = 1.42 × 10-7). While computer use was associated with a reduced risk of IVDD (OR = 0.66, 95%CI = 0.55 to 0.79, p = 8.06 × 10-6), LBP (OR = 0.49, 95%CI = 0.40 to 0.59, p = 2.68 × 10-13) and sciatica (OR = 0.58, 95%CI = 0.46 to 0.75, p = 1.98 × 10-5). Sensitivity analysis validated the robustness of MR outcomes. MVMR analysis showed that the causal effect of TV viewing on IVDD (OR = 1.59, 95%CI = 1.13 to 2.25, p = 0.008), LBP (OR = 2.15, 95%CI = 1.50 to 3.08, p = 3.38 × 10-5), and sciatica (OR = 1.61, 95%CI = 1.03 to 2.52, p = 0.037) was independent of other LSB. Furthermore, two-step MR analysis indicated that BMI, smoking initiation, T2DM may mediate the causal effect of TV viewing on these diseases.
This study provides empirical evidence supporting a positive causal association between TV viewing and sciatica, IVDD and LBP, which were potentially mediated by BMI, smoking initiation and T2DM.
Qiu Y
,Wei X
,Tao Y
,Song B
,Wang M
,Yin Z
,Xie M
,Duan A
,Chen Z
,Wang Z
... -
《Frontiers in Public Health》