Transjugular intrahepatic portosystemic shunts for adults with hepatorenal syndrome.
作者:
Gonzalez-Garay AG , Serralde-Zúñiga AE , Velasco Hidalgo L , Flores García NC , Aguirre-Salgado MI
展开
摘要:
收起
展开
DOI:
10.1002/14651858.CD011039.pub2
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(59)
引证文献(0)
-
Transjugular intrahepatic portosystemic shunts for adults with hepatorenal syndrome.
Gonzalez-Garay AG ,Serralde-Zúñiga AE ,Velasco Hidalgo L ,Flores García NC ,Aguirre-Salgado MI ... - 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Tamoxifen for adults with hepatocellular carcinoma.
Hepatocellular carcinoma is the most common type of liver cancer, accounting for 70% to 85% of individuals with primary liver cancer. Tamoxifen has been evaluated in randomised clinical trials in people with hepatocellular cancer. The reported results have been inconsistent. To evaluate the benefits and harms of tamoxifen or tamoxifen plus any other anticancer drugs compared with no intervention, placebo, any type of standard care, or alternative treatment in adults with hepatocellular carcinoma, irrespective of sex, administered dose, type of formulation, and duration of treatment. We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and major trials registries, and handsearched reference lists up to 26 March 2024. Parallel-group randomised clinical trials including adults (aged 18 years and above) diagnosed with advanced or unresectable hepatocellular carcinoma. Had we found cross-over trials, we would have included only the first trial phase. We did not consider data from quasi-randomised trials for analysis. Our critical outcomes were all-cause mortality, serious adverse events, and health-related quality of life. Our important outcomes were disease progression, and adverse events considered non-serious. We assessed risk of bias using the RoB 2 tool. We used standard Cochrane methods and Review Manager. We meta-analysed the outcome data at the longest follow-up. We presented the results of dichotomous outcomes as risk ratios (RR) and continuous data as mean difference (MD), with 95% confidence intervals (CI) using the random-effects model. We summarised the certainty of evidence using GRADE. We included 10 trials that randomised 1715 participants with advanced, unresectable, or terminal stage hepatocellular carcinoma. Six were single-centre trials conducted in Hong Kong, Italy, and Spain, while three were conducted as multicentre trials in single countries (France, Italy, and Spain), and one trial was conducted in nine countries in the Asia-Pacific region (Australia, Hong Kong, Indonesia, Malaysia, Myanmar, New Zealand, Singapore, South Korea, and Thailand). The experimental intervention was tamoxifen in all trials. The control interventions were no intervention (three trials), placebo (six trials), and symptomatic treatment (one trial). Co-interventions were best supportive care (three trials) and standard care (one trial). The remaining six trials did not provide this information. The number of participants in the trials ranged from 22 to 496 (median 99), mean age was 63.7 (standard deviation 4.18) years, and mean proportion of men was 74.7% (standard deviation 42%). Follow-up was three months to five years. Ten trials evaluated oral tamoxifen at five different dosages (ranging from 20 mg per day to 120 mg per day). All trials investigated one or more of our outcomes. We performed meta-analyses when at least two trials assessed similar types of tamoxifen versus similar control interventions. Eight trials evaluated all-cause mortality at varied follow-up points. Tamoxifen versus the control interventions (i.e. no treatment, placebo, and symptomatic treatment) results in little to no difference in mortality between one and five years (RR 0.99, 95% CI 0.92 to 1.06; 8 trials, 1364 participants; low-certainty evidence). In total, 488/682 (71.5%) participants died in the tamoxifen groups versus 487/682 (71.4%) in the control groups. The separate analysis results for one, between two and three, and five years were comparable to the analysis result for all follow-up periods taken together. The evidence is very uncertain about the effect of tamoxifen versus no treatment on serious adverse events at one-year follow-up (RR 0.44, 95% CI 0.19 to 1.06; 1 trial, 36 participants; very low-certainty evidence). A total of 5/20 (25.0%) participants in the tamoxifen group versus 9/16 (56.3%) participants in the control group experienced serious adverse events. One trial measured health-related quality of life at baseline and at nine months' follow-up, using the Spitzer Quality of Life Index. The evidence is very uncertain about the effect of tamoxifen versus no treatment on health-related quality of life (MD 0.03, 95% CI -0.45 to 0.51; 1 trial, 420 participants; very low-certainty evidence). A second trial found no appreciable difference in global health-related quality of life scores. No further data were provided. Tamoxifen versus control interventions (i.e. no treatment, placebo, or symptomatic treatment) results in little to no difference in disease progression between one and five years' follow-up (RR 1.02, 95% CI 0.91 to 1.14; 4 trials, 720 participants; low-certainty evidence). A total of 191/358 (53.3%) participants in the tamoxifen group versus 198/362 (54.7%) participants in the control group had progression of hepatocellular carcinoma. Tamoxifen versus control interventions (i.e. no treatment or placebo) may have little to no effect on adverse events considered non-serious during treatment, but the evidence is very uncertain (RR 1.17, 95% CI 0.45 to 3.06; 4 trials, 462 participants; very low-certainty evidence). A total of 10/265 (3.8%) participants in the tamoxifen group versus 6/197 (3.0%) participants in the control group had adverse events considered non-serious. We identified no trials with participants diagnosed with early stages of hepatocellular carcinoma. We identified no ongoing trials. Based on the low- and very low-certainty evidence, the effects of tamoxifen on all-cause mortality, disease progression, serious adverse events, health-related quality of life, and adverse events considered non-serious in adults with advanced, unresectable, or terminal stage hepatocellular carcinoma when compared with no intervention, placebo, or symptomatic treatment could not be established. Our findings are mostly based on trials at high risk of bias with insufficient power (fewer than 100 participants), and a lack of trial data on clinically important outcomes. Therefore, firm conclusions cannot be drawn. Trials comparing tamoxifen administered with any other anticancer drug versus standard care, usual care, or alternative treatment as control interventions were lacking. Evidence on the benefits and harms of tamoxifen in participants at the early stages of hepatocellular carcinoma was also lacking. This Cochrane review had no dedicated funding. Protocol available via DOI: 10.1002/14651858.CD014869.
Naing C ,Ni H ,Aung HH 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Exercise therapy for chronic fatigue syndrome.
Editorial note (19 December 2024; amended 31 January 2025): Larun L, Brurberg KG, Odgaard‐Jensen J, Price JR. Exercise therapy for chronic fatigue syndrome. Cochrane Database of Systematic Reviews 2019, Issue 10. Art. No.: CD003200. DOI: 10.1002/14651858.CD003200.pub8. Accessed 18 December 2024. This Editorial Note is for the above article, published online on 2 October 2019 on the Cochrane Library (https://www.cochranelibrary.com/), and has been issued by the Publisher, John Wiley & Sons Ltd, in agreement with the Cochrane Collaboration. The Editorial note has been agreed to inform readers that Cochrane is ceasing the production of a full update of this Cochrane review. A pilot project for engaging interest holders in the development of this Cochrane review was initiated on 2 October 2019 (see Editorial Note below) and has now been disbanded. Cochrane maintains its decision to publish this Cochrane review in 2019, which includes studies from searches up to 9 May 2014. Editorial note (2 October 2019): A statement from the Editor in Chief about this review and its planned update is available at https://www.cochrane.org/news/cfs Chronic fatigue syndrome (CFS) or myalgic encephalomyelitis (ME) is a serious disorder characterised by persistent postexertional fatigue and substantial symptoms related to cognitive, immune and autonomous dysfunction. There is no specific diagnostic test, therefore diagnostic criteria are used to diagnose CFS. The prevalence of CFS varies by type of diagnostic criteria used. Existing treatment strategies primarily aim to relieve symptoms and improve function. One treatment option is exercise therapy. The objective of this review was to determine the effects of exercise therapy for adults with CFS compared with any other intervention or control on fatigue, adverse outcomes, pain, physical functioning, quality of life, mood disorders, sleep, self-perceived changes in overall health, health service resources use and dropout. We searched the Cochrane Common Mental Disorders Group controlled trials register, CENTRAL, and SPORTDiscus up to May 2014, using a comprehensive list of free-text terms for CFS and exercise. We located unpublished and ongoing studies through the World Health Organization International Clinical Trials Registry Platform up to May 2014. We screened reference lists of retrieved articles and contacted experts in the field for additional studies. We included randomised controlled trials (RCTs) about adults with a primary diagnosis of CFS, from all diagnostic criteria, who were able to participate in exercise therapy. Two review authors independently performed study selection, 'Risk of bias' assessments and data extraction. We combined continuous measures of outcomes using mean differences (MDs) or standardised mean differences (SMDs). To facilitate interpretation of SMDs, we re-expressed SMD estimates as MDs on more common measurement scales. We combined dichotomous outcomes using risk ratios (RRs). We assessed the certainty of evidence using GRADE. We included eight RCTs with data from 1518 participants. Exercise therapy lasted from 12 weeks to 26 weeks. The studies measured effect at the end of the treatment and at long-term follow-up, after 50 weeks or 72 weeks. Seven studies used aerobic exercise therapies such as walking, swimming, cycling or dancing, provided at mixed levels in terms of intensity of the aerobic exercise from very low to quite rigorous, and one study used anaerobic exercise. Control groups consisted of passive control, including treatment as usual, relaxation or flexibility (eight studies); cognitive behavioural therapy (CBT) (two studies); cognitive therapy (one study); supportive listening (one study); pacing (one study); pharmacological treatment (one study) and combination treatment (one study). Most studies had a low risk of selection bias. All had a high risk of performance and detection bias. Exercise therapy compared with 'passive' control Exercise therapy probably reduces fatigue at end of treatment (SMD -0.66, 95% CI -1.01 to -0.31; 7 studies, 840 participants; moderate-certainty evidence; re-expressed MD -3.4, 95% CI -5.3 to -1.6; scale 0 to 33). We are uncertain if fatigue is reduced in the long term because the certainty of the evidence is very low (SMD -0.62, 95 % CI -1.32 to 0.07; 4 studies, 670 participants; re-expressed MD -3.2, 95% CI -6.9 to 0.4; scale 0 to 33). We are uncertain about the risk of serious adverse reactions because the certainty of the evidence is very low (RR 0.99, 95% CI 0.14 to 6.97; 1 study, 319 participants). Exercise therapy may moderately improve physical functioning at end of treatment, but the long-term effect is uncertain because the certainty of the evidence is very low. Exercise therapy may also slightly improve sleep at end of treatment and at long term. The effect of exercise therapy on pain, quality of life and depression is uncertain because evidence is missing or of very low certainty. Exercise therapy compared with CBT Exercise therapy may make little or no difference to fatigue at end of treatment (MD 0.20, 95% CI -1.49 to 1.89; 1 study, 298 participants; low-certainty evidence), or at long-term follow-up (SMD 0.07, 95% CI -0.13 to 0.28; 2 studies, 351 participants; moderate-certainty evidence). We are uncertain about the risk of serious adverse reactions because the certainty of the evidence is very low (RR 0.67, 95% CI 0.11 to 3.96; 1 study, 321 participants). The available evidence suggests that there may be little or no difference between exercise therapy and CBT in physical functioning or sleep (low-certainty evidence) and probably little or no difference in the effect on depression (moderate-certainty evidence). We are uncertain if exercise therapy compared to CBT improves quality of life or reduces pain because the evidence is of very low certainty. Exercise therapy compared with adaptive pacing Exercise therapy may slightly reduce fatigue at end of treatment (MD -2.00, 95% CI -3.57 to -0.43; scale 0 to 33; 1 study, 305 participants; low-certainty evidence) and at long-term follow-up (MD -2.50, 95% CI -4.16 to -0.84; scale 0 to 33; 1 study, 307 participants; low-certainty evidence). We are uncertain about the risk of serious adverse reactions (RR 0.99, 95% CI 0.14 to 6.97; 1 study, 319 participants; very low-certainty evidence). The available evidence suggests that exercise therapy may slightly improve physical functioning, depression and sleep compared to adaptive pacing (low-certainty evidence). No studies reported quality of life or pain. Exercise therapy compared with antidepressants We are uncertain if exercise therapy, alone or in combination with antidepressants, reduces fatigue and depression more than antidepressant alone, as the certainty of the evidence is very low. The one included study did not report on adverse reactions, pain, physical functioning, quality of life, sleep or long-term results. Exercise therapy probably has a positive effect on fatigue in adults with CFS compared to usual care or passive therapies. The evidence regarding adverse effects is uncertain. Due to limited evidence it is difficult to draw conclusions about the comparative effectiveness of CBT, adaptive pacing or other interventions. All studies were conducted with outpatients diagnosed with 1994 criteria of the Centers for Disease Control and Prevention or the Oxford criteria, or both. Patients diagnosed using other criteria may experience different effects.
Larun L ,Brurberg KG ,Odgaard-Jensen J ,Price JR ... - 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Treatment for women with postpartum iron deficiency anaemia.
Postpartum iron deficiency anaemia is caused by antenatal iron deficiency or excessive blood loss at delivery and might affect up to 50% of labouring women in low- and middle-income countries. Effective and safe treatment during early motherhood is important for maternal well-being and newborn care. Treatment options include oral iron supplementation, intravenous iron, erythropoietin, and red blood cell transfusion. To assess the benefits and harms of the available treatment modalities for women with postpartum iron deficiency anaemia. These include intravenous iron, oral iron supplementation, red blood cell transfusion, and erythropoietin. A Cochrane Information Specialist searched for all published, unpublished, and ongoing trials, without language or publication status restrictions. We searched databases including CENTRAL, MEDLINE, Embase, CINAHL, LILACS, WHO ICTRP, and ClinicalTrials.gov, together with reference checking, citation searching, and contact with study authors to identify eligible studies. We applied date limits to retrieve new records since the last search on 9 April 2015 until 11 April 2024. We included published, unpublished, and ongoing randomised controlled trials (RCTs) that compared treatments for postpartum iron deficiency anaemia with placebo, no treatment, or alternative treatments. Cluster-randomised trials were eligible for inclusion. We included RCTs regardless of blinding. Participants were women with postpartum haemoglobin ≤ 12 g/dL, treated within six weeks after childbirth. We excluded non-randomised, quasi-randomised, and cross-over trials. The critical outcomes of this review were maternal mortality and fatigue. The important outcomes included persistent anaemia symptoms, persistent postpartum anaemia, psychological well-being, infections, compliance with treatment, breastfeeding, length of hospital stay, serious adverse events, anaphylaxis or evidence of hypersensitivity, flushing/Fishbane reaction, injection discomfort/reaction, constipation, gastrointestinal pain, number of red blood cell transfusions, and haemoglobin levels. We assessed risk of bias in the included studies using the Cochrane RoB 1 tool. Two review authors independently performed study screening, risk of bias assessment, and data extraction. We contacted trial authors for supplementary data when necessary. We screened all trials for trustworthiness and scientific integrity using the Cochrane Trustworthiness Screening Tool. We conducted meta-analyses using a fixed-effect model whenever feasible to synthesise outcomes. In cases where data were not suitable for meta-analysis, we provided a narrative summary of important findings. We evaluated the overall certainty of the evidence using GRADE. We included 33 RCTs with a total of 4558 postpartum women. Most trials were at high risk of bias for several risk of bias domains. Most of the evidence was of low or very low certainty. Imprecision due to few events and risk of bias due to lack of blinding were the most important factors. Intravenous iron versus oral iron supplementation The evidence is very uncertain about the effect of intravenous iron on mortality (risk ratio (RR) 2.95, 95% confidence interval (CI) 0.12 to 71.96; P = 0.51; I² = not applicable; 3 RCTs; 1 event; 572 women; very low-certainty evidence). One woman died of cardiomyopathy, and another developed arrhythmia, both in the groups treated with intravenous iron. Intravenous iron probably results in a slight reduction in fatigue within 8 to 28 days (standardised mean difference -0.25, 95% CI -0.42 to -0.07; P = 0.006; I² = 47%; 2 RCTs; 515 women; moderate-certainty evidence). Breastfeeding was not reported. Oral iron probably increases the risk of constipation compared to intravenous iron (RR 0.12, 95% CI 0.06 to 0.21; P < 0.001; I² = 0%; 10 RCTs; 1798 women; moderate-certainty evidence). The evidence is very uncertain about the effect of intravenous iron on anaphylaxis or hypersensitivity (RR 2.77, 95% CI 0.31 to 24.86; P = 0.36; I² = 0%; 12 RCTs; 2195 women; very low-certainty evidence). Three women treated with intravenous iron experienced anaphylaxis or hypersensitivity. The trials that reported on haemoglobin at 8 to 28 days were too heterogeneous to pool. However, 5 of 6 RCTs favoured intravenous iron, with mean changes in haemoglobin ranging from 0.73 to 2.10 g/dL (low-certainty evidence). Red blood cell transfusion versus intravenous iron No women died in the only trial that reported on mortality (1 RCT; 7 women; very low-certainty evidence). The evidence is very uncertain about the effect of red blood cell transfusion on fatigue at 8 to 28 days (mean difference (MD) 1.20, 95% CI -2.41 to 4.81; P = 0.51; I² = not applicable; 1 RCT; 13 women; very low-certainty evidence) and breastfeeding more than six weeks postpartum (RR 0.43, 95% CI 0.12 to 1.57; P = 0.20; I² = not applicable; 1 RCT; 13 women; very low-certainty evidence). Constipation and anaphylaxis were not reported. Red blood cell transfusion may result in little to no difference in haemoglobin within 8 to 28 days (MD -1.00, 95% CI -2.02 to 0.02; P = 0.05; I² = not applicable; 1 RCT; 12 women; low-certainty evidence). Intravenous iron and oral iron supplementation versus oral iron supplementation Mortality and breastfeeding were not reported. One trial reported a greater improvement in fatigue in the intravenous and oral iron group, but the effect size could not be calculated (1 RCT; 128 women; very low-certainty evidence). Intravenous iron and oral iron may result in a reduction in constipation compared to oral iron alone (RR 0.21, 95% CI 0.07 to 0.69; P = 0.01; I² = not applicable; 1 RCT; 128 women; low-certainty evidence). There were no anaphylaxis or hypersensitivity events in the trials (2 RCTs; 168 women; very low-certainty evidence). Intravenous iron and oral iron may result in little to no difference in haemoglobin (g/dL) at 8 to 28 days (MD 0.00, 95% CI -0.48 to 0.48; P = 1.00; I² = not applicable; 1 RCT; 60 women; low-certainty evidence). Red blood cell transfusion versus no transfusion Mortality, fatigue at day 8 to 28, constipation, anaphylaxis, and haemoglobin were not reported. Red blood cell transfusion may result in little to no difference in breastfeeding more than six weeks postpartum (RR 0.91, 95% CI 0.78 to 1.07; P = 0.24; I² = not applicable; 1 RCT; 297 women; low-certainty evidence). Oral iron supplementation versus placebo or no treatment Mortality, fatigue, breastfeeding, constipation, anaphylaxis, and haemoglobin were not reported. Two trials reported on gastrointestinal symptoms, but did not report results by study arm. Intravenous iron probably reduces fatigue slightly in the early postpartum weeks (8 to 28 days) compared to oral iron tablets, but probably results in little to no difference after four weeks. It is very uncertain if intravenous iron has an effect on mortality and anaphylaxis/hypersensitivity. Breastfeeding was not reported. Intravenous iron may increase haemoglobin slightly more than iron tablets, but the data were too heterogeneous to pool. However, changes in haemoglobin levels are a surrogate outcome, and treatment decisions should preferentially be based on patient-relevant outcomes. Iron tablets probably result in a large increase in constipation compared to intravenous iron. The effect of red blood cell transfusion compared to intravenous iron on mortality, fatigue, and breastfeeding is very uncertain. No studies reported on constipation or anaphylaxis/hypersensitivity. Red blood cell transfusion may result in little to no difference in haemoglobin at 8 to 28 days. The effect of intravenous iron and oral iron supplementation on mortality, fatigue, breastfeeding, and anaphylaxis/hypersensitivity is very uncertain or unreported. Intravenous iron and oral iron may result in a reduction in constipation compared to oral iron alone, and in little to no difference in haemoglobin. The effect of red blood cell transfusion compared to non-transfusion on mortality, fatigue, constipation, anaphylaxis/hypersensitivity, and haemoglobin is unreported. Red blood cell transfusion may result in little to no difference in breastfeeding. The effect of oral iron supplementation on mortality, fatigue, breastfeeding, constipation, anaphylaxis/hypersensitivity, and haemoglobin is unreported. This Cochrane review had no dedicated funding. Protocol and previous versions are available: Protocol (2013) [DOI: 10.1002/14651858.CD010861] Original review (2004) [DOI: 10.1002/14651858.CD004222.pub2] Review update (2015) [DOI: 10.1002/14651858.CD010861.pub2].
Jensen MCH ,Holm C ,Jørgensen KJ ,Schroll JB ... - 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Antibiotics for treatment of leptospirosis.
Leptospirosis is a disease transmitted from animals to humans through water, soil, or food contaminated with the urine of infected animals, caused by pathogenic Leptospira species. Antibiotics are commonly prescribed for the management of leptospirosis. Despite the widespread use of antibiotic treatment for leptospirosis, there seems to be insufficient evidence to determine its effectiveness or to recommend antibiotic use as a standard practice. This updated systematic review evaluated the available evidence regarding the use of antibiotics in treating leptospirosis, building upon a previously published Cochrane review. To evaluate the benefits and harms of antibiotics versus placebo, no intervention, or another antibiotic for the treatment of people with leptospirosis. We identified randomised clinical trials following standard Cochrane procedures. The date of the last search was 27 March 2023. We searched for randomised clinical trials of various designs that examined the use of antibiotics for treating leptospirosis. We did not impose any restrictions based on the age, sex, occupation, or comorbidities of the participants involved in the trials. Our search encompassed trials that evaluated antibiotics, regardless of the method of administration, dosage, and schedule, and compared them with placebo or no intervention, or compared different antibiotics. We included trials regardless of the outcomes reported. During the preparation of this review, we adhered to the Cochrane methodology and used Review Manager. The primary outcomes were all-cause mortality and serious adverse events (nosocomial infection). Our secondary outcomes were quality of life, proportion of people with adverse events considered non-serious, and days of hospitalisation. To assess the risk of bias of the included trials, we used the RoB 2 tool, and for evaluating the certainty of evidence we used GRADEpro GDT software. We presented dichotomous outcomes as risk ratios (RR) and continuous outcomes as mean differences (MD), both accompanied by their corresponding 95% confidence intervals (CI). We used the random-effects model for all our main analyses and the fixed-effect model for sensitivity analyses. For our primary outcome analyses, we included trial data from the longest follow-up period. We identified nine randomised clinical trials comprising 1019 participants. Seven trials compared two intervention groups and two trials compared three intervention groups. Amongst the trials comparing antibiotics versus placebos, four trials assessed penicillin and one trial assessed doxycycline. In the trials comparing different antibiotics, one trial evaluated doxycycline versus azithromycin, one trial assessed penicillin versus doxycycline versus cefotaxime, and one trial evaluated ceftriaxone versus penicillin. One trial assessed penicillin with chloramphenicol and no intervention. Apart from two trials that recruited military personnel stationed in endemic areas or military personnel returning from training courses in endemic areas, the remaining trials recruited people from the general population presenting to the hospital with fever in an endemic area. The participants' ages in the included trials was 13 to 92 years. The treatment duration was seven days for penicillin, doxycycline, and cephalosporins; five days for chloramphenicol; and three days for azithromycin. The follow-up durations varied across trials, with three trials not specifying their follow-up periods. Three trials were excluded from quantitative synthesis; one reported zero events for a prespecified outcome, and two did not provide data for any prespecified outcomes. Antibiotics versus placebo or no intervention The evidence is very uncertain about the effect of penicillin versus placebo on all-cause mortality (RR 1.57, 95% CI 0.65 to 3.79; I2 = 8%; 3 trials, 367 participants; very low-certainty evidence). The evidence is very uncertain about the effect of penicillin or chloramphenicol versus placebo on adverse events considered non-serious (RR 1.05, 95% CI 0.35 to 3.17; I2 = 0%; 2 trials, 162 participants; very low-certainty evidence). None of the included trials assessed serious adverse events. Antibiotics versus another antibiotic The evidence is very uncertain about the effect of penicillin versus cephalosporin on all-cause mortality (RR 1.38, 95% CI 0.47 to 4.04; I2 = 0%; 2 trials, 348 participants; very low-certainty evidence), or versus doxycycline (RR 0.93, 95% CI 0.13 to 6.46; 1 trial, 168 participants; very low-certainty evidence). The evidence is very uncertain about the effect of cefotaxime versus doxycycline on all-cause mortality (RR 0.18, 95% CI 0.01 to 3.78; 1 trial, 169 participants; very low-certainty evidence). The evidence is very uncertain about the effect of penicillin versus doxycycline on serious adverse events (nosocomial infection) (RR 0.62, 95% CI 0.11 to 3.62; 1 trial, 168 participants; very low-certainty evidence) or versus cefotaxime (RR 1.01, 95% CI 0.15 to 7.02; 1 trial, 175 participants; very low-certainty evidence). The evidence is very uncertain about the effect of doxycycline versus cefotaxime on serious adverse events (nosocomial infection) (RR 1.01, 95% CI 0.15 to 7.02; 1 trial, 175 participants; very low-certainty evidence). The evidence is very uncertain about the effect of penicillin versus cefotaxime (RR 3.03, 95% CI 0.13 to 73.47; 1 trial, 175 participants; very low-certainty evidence), versus doxycycline (RR 2.80, 95% CI 0.12 to 67.66; 1 trial, 175 participants; very low-certainty evidence), or versus chloramphenicol on adverse events considered non-serious (RR 0.74, 95% CI 0.15 to 3.67; 1 trial, 52 participants; very low-certainty evidence). Funding Six of the nine trials included statements disclosing their funding/supporting sources and three trials did not mention funding source. Four of the six trials mentioning sources received funds from public or governmental sources or from international charitable sources, and the remaining two, in addition to public or governmental sources, received support in the form of trial drug supply directly from pharmaceutical companies. As the certainty of evidence is very low, we do not know if antibiotics provide little to no effect on all-cause mortality, serious adverse events, or adverse events considered non-serious. There is a lack of definitive rigorous data from randomised trials to support the use of antibiotics for treating leptospirosis infection, and the absence of trials reporting data on clinically relevant outcomes further adds to this limitation.
Win TZ ,Han SM ,Edwards T ,Maung HT ,Brett-Major DM ,Smith C ,Lee N ... - 《Cochrane Database of Systematic Reviews》
被引量: 1 发表:1970年
加载更多
加载更多
加载更多