Spatially contrastive variational autoencoder for deciphering tissue heterogeneity from spatially resolved transcriptomics.
Recent advances in spatially resolved transcriptomics (SRT) have brought ever-increasing opportunities to characterize expression landscape in the context of tissue spatiality. Nevertheless, there still exist multiple challenges to accurately detect spatial functional regions in tissue. Here, we present a novel contrastive learning framework, SPAtially Contrastive variational AutoEncoder (SpaCAE), which contrasts transcriptomic signals of each spot and its spatial neighbors to achieve fine-grained tissue structures detection. By employing a graph embedding variational autoencoder and incorporating a deep contrastive strategy, SpaCAE achieves a balance between spatial local information and global information of expression, enabling effective learning of representations with spatial constraints. Particularly, SpaCAE provides a graph deconvolutional decoder to address the smoothing effect of local spatial structure on expression's self-supervised learning, an aspect often overlooked by current graph neural networks. We demonstrated that SpaCAE could achieve effective performance on SRT data generated from multiple technologies for spatial domains identification and data denoising, making it a remarkable tool to obtain novel insights from SRT studies.
Hu Y
,Xiao K
,Yang H
,Liu X
,Zhang C
,Shi Q
... -
《-》
Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks.
Recent advances in spatially resolved transcriptomics (ST) technologies enable the measurement of gene expression profiles while preserving cellular spatial context. Linking gene expression of cells with their spatial distribution is essential for better understanding of tissue microenvironment and biological progress. However, effectively combining gene expression data with spatial information to identify spatial domains remains challenging.
To deal with the above issue, in this paper, we propose a novel unsupervised learning framework named STMGCN for identifying spatial domains using multi-view graph convolution networks (MGCNs). Specifically, to fully exploit spatial information, we first construct multiple neighbor graphs (views) with different similarity measures based on the spatial coordinates. Then, STMGCN learns multiple view-specific embeddings by combining gene expressions with each neighbor graph through graph convolution networks. Finally, to capture the importance of different graphs, we further introduce an attention mechanism to adaptively fuse view-specific embeddings and thus derive the final spot embedding. STMGCN allows for the effective utilization of spatial context to enhance the expressive power of the latent embeddings with multiple graph convolutions. We apply STMGCN on two simulation datasets and five real spatial transcriptomics datasets with different resolutions across distinct platforms. The experimental results demonstrate that STMGCN obtains competitive results in spatial domain identification compared with five state-of-the-art methods, including spatial and non-spatial alternatives. Besides, STMGCN can detect spatially variable genes with enriched expression patterns in the identified domains. Overall, STMGCN is a powerful and efficient computational framework for identifying spatial domains in spatial transcriptomics data.
Shi X
,Zhu J
,Long Y
,Liang C
... -
《-》
STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background.
We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots' embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets.
We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters.
We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks.
Peng L
,He X
,Peng X
,Li Z
,Zhang L
... -
《-》
Dissecting Spatiotemporal Structures in Spatial Transcriptomics via Diffusion-Based Adversarial Learning.
Recent advancements in spatial transcriptomics (ST) technologies offer unprecedented opportunities to unveil the spatial heterogeneity of gene expression and cell states within tissues. Despite these capabilities of the ST data, accurately dissecting spatiotemporal structures (e.g., spatial domains, temporal trajectories, and functional interactions) remains challenging. Here, we introduce a computational framework, PearlST (partial differential equation [PDE]-enhanced adversarial graph autoencoder of ST), for accurate inference of spatiotemporal structures from the ST data using PDE-enhanced adversarial graph autoencoder. PearlST employs contrastive learning to extract histological image features, integrates a PDE-based diffusion model to enhance characterization of spatial features at domain boundaries, and learns the latent low-dimensional embeddings via Wasserstein adversarial regularized graph autoencoders. Comparative analyses across multiple ST datasets with varying resolutions demonstrate that PearlST outperforms existing methods in spatial clustering, trajectory inference, and pseudotime analysis. Furthermore, PearlST elucidates functional regulations of the latent features by linking intercellular ligand-receptor interactions to most contributing genes of the low-dimensional embeddings, as illustrated in a human breast cancer dataset. Overall, PearlST proves to be a powerful tool for extracting interpretable latent features and dissecting intricate spatiotemporal structures in ST data across various biological contexts.
Wang H
,Zhao J
,Nie Q
,Zheng C
,Sun X
... -
《Research》